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ABSTRACT

The use of advanced automation and robotics within the Space Station Freedom Program is motivated
by potential benefits, such as reduced life cycle costs and technology transfer to industry. As advanced
automation and robotics technologies mature, they will be utilized within systems onboard Space Station
Freedom and the space platforms, as well as within control centers on the ground. The National
Aeronautics and Space Administration has substantial expertise related to the development and testing of
conventional software systems for in-flight use; however, little experience or knowledge exists with
respect to engineering, testing, and certifying systems which utilize advanced automation technologies.
These technologies will need to be elevated to a high level of readiness before they cart be safely used in
space.

This document reviews, for Space Station Freedom Program managers, Space Station Freedom
Program advanced automation capabilities and plans, including design and research facilities (i.e.,
laboratories and test beds), operational and support facilities (i.e., Software Support Environment and
Multi-System Integration Facility), and existing prototypes. In addition, preliminary concepts and
strategies are presented for the evolution of Space Station Freedom Program facilities in support of the
development and testing of advanced automation.

Suggested Keywords: advanced automation, test beds, expert systems, knowledge-based systems,
artificial intelligence, flight certification, verification and validation, Space Station Freedom, Space
Station Freedom Program
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EXECUTIVE SUMMARY

INTRODUCTION

The use of advanced automation and robotics within the Space Station Freedom Program (SSFP) is
motivated by potential benefits, such as reduced life cycle costs and technology transfer to industry. As
advanced automation and robotics technologies mature, they will be utilized within systems onboard
Space Station Freedom and the space platforms, as well as within control centers on the ground. The
National Aeronautics and Space Administration (NASA) has substantial expertise related to the de-
velopment and testing of conventional software systems for in-flight use; however, little experience or
knowledge exists with respect to engineering, testing, and certifying systems which utilize advanced
automation technologies. These technologies will need to be elevated to a high level of readiness before
they can be safely used in space.

The purpose of this task is to review, for SSFP managers, SSFP automation capabilities and plans,
including design and research facilities (i.e., laboratories and test beds), operational and support
facilities (i.e., Software Support Environment and Multi-System Integration Facility), and existing
prototypes. In addition, preliminary concepts and strategies are presented for the evolution of SSFP
facilities in support of the development and testing of advanced automation. This review will provide a
base upon which subsequent evolution plans, relative to the coordinated use of advanced automation
within the SSFP, can be generated for SSFP flight systems and ground facilities.

This task is funded by the Space Station Freedom Advanced Development Program, Strategic Plans and
Programs Division (Code ST), Office of Space Station (OSS). This task is managed by the Intelligent
Systems Branch of the Engineering Directorate at the Johnson Space Center (JSC).

For the purposes of this task, advanced automation is defined as the use of concepts and methods of
high-level symbolic inference by a computer and the symbolic representation of the knowledge to be
used in making inferences so as to make a machine behave in ways that humans recognize as intelligent
behavior. The technical scope of this study is restricted to advanced automation only and, therefore,
excludes robotics.

Several studies that preceded this task provide a firm foundation for the definition of advanced au-
tomation software engineering facilities for the SSFP. The following studies are especially important:
ongoing reports of the NASA Advanced Technology Advisory Committee (ATAC); the Systems
Autonomy Technology Program (SATP); the Space Station Technology Development Mission
Requirements Definition for Advanced Automation Study; and the Space Station Advanced Automation
Study Final Report.

The MITRE Corporation's support of Space Station Freedom development has included support for the
development of requirements for many SSFP ground and space systems. To extend this broad knowl-
edge base in support of this task, both NASA and non-NASA advanced automation test beds and labo-
ratories were visited.

This summary briefly discusses design and research facilities (laboratories and test beds), operational
and support capabilities (the Software Support Environment and the Multi-System Integration Facility),
and evolution paths for advanced automation.
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DESIGN AND RESEARCHFACILITIES

Design and research capabilities of the SSFP include existing SSFP laboratories and test beds for on-
board and ground systems. The laboratories and test beds, major test bed integration activities, and
other significant research activities discussed in the body of this document are briefly introduced in the
following paragraphs.

Laboratories and Test Beds

Data Management System Test Beds. The Data Management System (DMS) will provide
hardware resources and software services on the manned base that support the data processing and
communications requirements of Space Station Freedom systems and flight elements. There are two
DMS test beds: the JSC DMS Test Bed, oriented toward functions and services; and the International
Business Machines (IBM) DMS Test Bed, oriented toward hardware design testing. Within this
document, the phrase DMS Test Bed refers to the JSC DMS Test Bed.

JSC Operations Management System Prototypes. The DMS Test Bed is the host facility
for the JSC Operations Management System Prototypes. These prototypes target activities such as the
commanding, monitoring, and control of flight systems which can benefit from increased automation.
These operations management tasks have historically been performed by the flight crew, ground
controllcrs, and engineering support personnel. Space Station Freedom operations management
concepts will be implemented as the Operations Management System (OMS), a major application of the
DMS software. Advanced automation technologies, as they mature, will be utilized to provide increased
autonomy.

Two prototypes, developed by The MITRE Corporation, are currently being used within the DMS Test
Bed. The Integrated Status Assessment expert system prototype performs station-wide failure
diagnosis. The Procedures Interpreter prototype demonstrates a possible implementation of execution
of the short term plan, one of the OMS functions.

Thermal Control System Test Beds. The Thermal Control System will maintain the Space
Station Freedom equipment and customer payloads within their allowable operational and non-
operational temperature range. The JSC Thermal Test Bed is a complete thermal system composed of
test articles (i.e., pumps, radiators, evaporators, condensers, central thermal buss). Several sets of
thermal test articles are being tested and compared. The physical thermal test bed at Ames Research
Center (ARC) is a small brassboard of one configuration of the JSC Thermal Test Bed. ARC is
responsible, in association with JSC thermal engineers, for the development of Thermal Expert System
(I'EXSYS). TEXSYS will control and monitor one configuration of the thermal test bed and will par-
ticipate in the 1988 Systems Autonomy Demonstration Project (SADP) single-system demonstration, as
well as later SADP demonstrations.

Electrical Power System Test Beds. The Electrical Power System (EPS) will provide, dis-
tribute, and store electrical power for the Space Station Freedom systems and elements. The Lewis Re-
search Center (LeRC) is responsible for the development of the EPS, which is the part of the power
system which generates the electrical power. Marshall Space Flight Center (MSFC) is responsible for
developing the Space Station Module (SSM)/Power Management and Distribution (PMAD) System,
which is the part of the power system which distributes the power within a Space Station Freedom
module. The JSC Generic Electrical Power Distribution and Control Test Bed provides a simulation of
the Space Station Freedom power generation and distribution system to evaluate candidate solutions to
the Space Station Freedom power system in support of the ETC integration efforts.

JSC Guidance, Navigation, and Control Emulator Test Bed. The Guidance, Naviga-
tion, & Control (GN&C) Emulator Test Bed allows the testing of GN&C design options and operations

vi



concepts. The test bed consists of a set of small computers connected with communication busses, em-
ulating the distributed architecture, software, programs, and other functions of the GN&C System.

JSC Communications and Tracking System Test Bed. The Communications and Track-
ing (C&T) System provides all Space Station Freedom manned base communications services, includ-
ing audio, video, space-to-space communications, and space-to-ground communications. The C&T
system also provides the necessary tracking services to GN&C. The Communications and Tracking
Control and Monitoring (C&M) Subsystem Test Bed is used to develop and evaluate candidate software
for the Space Station Freedom C&T system.

ARC Advanced Architecture Test Bed. The goals of the Advanced Architecture Test Bed are
to investigate the hardware and software issues relative to the application of onboard multi-processor
systems to NASA missions and to provide the required prototyping capability for transfer of the
architecture technologies to specific NASA projects. Example technical problems addressed by this test
bed include real-time fault tolerant architectures, management and control of large distributed knowledge
bases, and operating systems for a distributed heterogeneous environment. A major purpose of the
Ames test bed is to investigate advanced computing concepts and to feed the results to JSC for possible
use within the DMS Test Bed.

Other DMS Nodes. The Human Computer Interaction Node of the JSC DMS Test Bed is a
prototype configuration which will allow the exploration of human factors issues through the
presentation of information produced by the OMS and core systems nodes. The MPAC Displays and
Control (D&C) Node is used for the prototyping of the fixed MPAC hardware configuration and on-
board crew controlling and monitoring activities in a Space Station Freedom environment.

Advanced Automation Activities. Many of these laboratories and test beds are developing
advanced automation prototypes for their respective systems. The following list shows the prototypes
being developed or tested at the laboratories and test beds discussed in this study.

• JSC OMS Test Node Integrated Status Assessment expert system prototype

• ARC OAST Laboratory

• LeRC EPS Test Bed

MSFC SSM/PMAD Test Bed

• JSC GN&C Emulator Test Bed

• JSC C&T C&M Test Bed

Procedures Interpreter prototype

Thermal Expert System OEXSYS)

Power Management and Distribution System (PMACS)

Automated Power Expert (APEX)

Loads Priority List Management System (LPLMS)

Loads Enable Scheduler (LES)

Fault Recovery and Management Expert System (FRAMES)

On Board Check Out (OBCO)

Local Controller Fault Manager expert system

Central Processor Resource Manager expert system

Most of these prototypes (e.g., TEXSYS, APEX) are diagnostic systems, the most mature application
: of expert systems technology. A wide variety of development platforms are being used, which is ap-

propriate for early development of the Space Station Freedom. As the Station Freedom design evolves
and matures, and technology demonstrations take place, these laboratory and test bed activities should
evolve toward high-fidelity, standard, flight-like hardware and software platforms. In addition, inter-
face issues between advanced automation technologies and conventional software engineering tools
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(e.g.,Ada)shouldbeaddressed.Theseresearchanddevelopmentactivitiesarediscussed in more detail
within the body of the paper.

Major Test Bed Integration Activities

End-to-End Test Capability. The Space Station Information System (SSIS) comprises the in-
formation processing and communications capabilities that will be involved in handling operational and
scientific data generated or used within the SSFP. The SSIS will provide end-to-end connection of, and
a variety of information services to, a diverse and geographically distributed user community. This end-
to-end connectivity will extend from the flight systems and payloads, to the ground-based support
facilities, and on to university labs and international partner sites.

The role of the End-to-End Test Capability (ETC) is to support SSIS development efforts through ad-
vanced integration, that is, validation of operations concepts and demonstration of needed levels of in-
teroperability in system designs. To this end, the ETC activities will require the integration of many
SSFP test beds.

Phase I ETC activities consisted of the integration of the JSC DMS Test Bed, the OMA Node, and the
GN&C Emulator Test Bed to perform a Space Station Freedom reboost scenario, leaving hooks and
scars for adding other systems simulations as they become available. The implementation of Phase I
was completed and was widely demonstrated. Phase II ETC integration will functionally integrate sev-
eral additional system test beds and support nodes into the reboost scenario used in Phase I. Implemen-
tation of Phase II is in progress. Future ETC integration efforts will emphasize nodes that are remote to
JSC and additional scenarios. The DMS Test Bed will become the equivalent of one node of a broader
SSIS ETC.

Systems Autonomy Demonstration Project. The Systems Autonomy Demonstration
Program (SADP) is funded by the NASA Office of Aeronautics and Space Technology as part of the
SATP. This program's goal is to develop, integrate, and demonstrate the technology to enable
intelligent autonomous systems for future NASA missions. The program objectives will be
accomplished by a Core Technology research program closely coupled with several major demonstra-
tions, the SADP. The SADP activities include a sequence of progressively more complex
demonstrations. This sequence includes the intelligent control and operation of single subsystems in
1988, multiple subsystems in 1990, hierarchical multiple subsystems in 1993, and distributed multiple
subsystems in 1996.

The 1988 single system demonstration will be a joint effort between ARC and JSC for the autonomous
thermal control system operations for Space Station Freedom. The 1990 multiple system demonstration
will be a joint effort between ARC, LeRC, MSFC, and JSC for the autonomous control of the thermal
and electrical power systems for Space Station Freedom. The 1993 hierarchical demonstration and the
1996 distributed demonstration will evaluate and validate methodologies for expert system control of
multiple subsystems through hierarchical and distributed architectural strategies, respectively.

Space Station Control Center Test Bed. The Space Station Control Center (SSCC), an
SSFP ground facility at JSC, will be responsible for tactical and execution level planning and integration
of manned base and user systems operations, monitoring, control, and configuration management of the
Space Station Freedom core systems, storage and retrieval of core systems data, the overall integrity of
the manned base, and the safety of the flight crew.

Many SSCC critical design issues can be evaluated in a stand-alone environment; however, the structure
of the integrated ETC environment will be utilized to support testing of several levels of SSCC critical
design issues and concepts. Initial SSCC Test Bed efforts were focused on connectivity and interop-
erability to achieve a distributed test bed environment. This connectivity included the SSCC Test Bed,
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theDMSTestBed,andtheC&TTestBed.Datalinksto the Goddard Space Hight Center (GSFC) and
to Stanford University were also established. The ground portion of the OMS, the Operations
Management Ground Application (OMGA), is a major piece of the SSCC software, and an OMGA
prototype is being implemented.

Other Significant Research Activities

INCO Expert System Project. One part of the SATP consists of specific domain
demonstrations. A set of these demonstrations has been planned to facilitate technology transfer to
domains other than the Space Station Freedom. One of these demonstrations is the Integrated
Communications Officer (INCO) Expert System Support Project (IESP). This demonstration is
significant in that it will be the first NASA knowledge-based system to be implemented into a real-time
operational environment.

The objective of IESP is to provide assistance to INCOs in the management (i.e., control and monitor-
ing) of two-way communication between the ground and the Space Shuttle in orbit, as well as between
the Space Shuttle and its payloads. The INCOs' job is to monitor console displays which present real-
time information about the communication links (voice, video, digital data) between the ground and the
shuttle, and to send commands to communication devices to keep the links working properly. The
INCO expert system attempts to emulate the responses of INCOs to communication stream malfunctions
and configuration problems.

Transition Flight Control Room. The Transition Flight Control Room (TFCR) at JSC is an
engineering test bed for control room hardware and software systems in a near operational environment.
A major function of the TFCR is support for Mission Control Center (MCC) Upgrade, the augmentation
and replacement of major MCC hardware and software. The TFCR also serves as a generalized control
center test bed environment. It provides a demonstration facility for design approaches, allows the
validation of user operational requirements, and the transition of new technologies into flight control
rooms. The TFCR allows flight controllers to evaluate proposed upgrades under near operational
conditions (e.g., using real telemetry data).

Issues Related to Design and Research Facilities. The major issues noted with regard to de-
sign and research facilities deal with cooperative problem solving, technology transfer, and communica-
tion between these facilities. While the authors were visiting lab and test beds to collect information,
personnel at many of these facilities were interested in any information they could collect on activities at
other facilities. A formal means of gathering this information could not be identified by these personnel.
While communication between some facilities was taking place or was planned, for technology transfer
or coordination of schedules (e.g., for SADP demonstrations), poor communication between these
facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces,
scheduling problems, and increased cost. Formal mechanisms by which effective communication and
cooperative problem solving can take place, and information can be disseminated, must be defined.

OPERATIONAL AND SUPPORT CAPABILITIES

The operational and support capabilities discussed are the Software Support Environment (SSE) and the
Multi-System Integration Facility (MSIF). The SSE is an environment and a set of policies, procedures,
and tools that provide an overall framework for managing software development within the SSFP. The
components of the SSE are the SSE Development Facility (SSEDF) and the Software Production Facili-
ties (SPFs).

The SSEDF is a single facility located at JSC at which the SSFP software development policies and
tools are baselined and made available to the SPFs. In addition, the SSEDF will serve as a central
repository of common models of the Space Station Freedom systems to be used for test and integration.
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TheSPFsaredistributed facilities located at NASA centers and contractor sites for SSFP software
development using the policies and tools provided by the SSEDF. Special SPFs, called Software
Integration Facilities (SITs), will be used for intra-system integration.

The MSIF will be the final point for integration and test of SSFP flight software before it is certified for
flight readiness. The goal of the MSIF is to test and certify SSFP systems that are coupled, through the
DMS, with other systems. The MSIF will utilize both system models and actual systems to perform
this testing.

Issues Related to the Operational and Support Capabilities. The SSE provides critical capa-
bilities relative to evolution paths for advanced automation development and testing. The SSE will need
to accommodate the development and testing of advanced automation applications by providing appro-
priate tools and procedures, including appropriate life cycle models and verification and validation pro-
cedures. Intra-system integration issues relative to advanced automation will need to be addressed
within the SITs. The SSE will need to evolve as advanced automation technologies mature and become
available for use in space systems. The role of the MSIT in promoting the use of advanced automation
in space will probably be smaller than the role of the SSE. However, the use of advanced automation in
distributed systems will certainly present unique system integration problems.

SUMMARY OF EVOLUTION ISSUES AND STRATEGIES

As advanced automation technologies mature and standards are defined, reliable and cost-effective sys-
tems can be built using these new technologies if the laboratories, test beds, SSE, and MSIF are pre-
pared to support their application. Currently, the most mature of the new technologies is Knowledge-
Based Systems (KBSs). No longer are KBSs considered magic; they are just a new kind of software.
The development activities for KBSs correspond in an approximate way to those performed in a
conventional software development project, although they are performed in a somewhat different
fashion. To support these differences, existing facilities need not be replaced; they need merely to
evolve to support these new technologies.

Two development environments must exist within the SSFP to promote advanced automation technolo-
gies to the required level of technology readiness: environments for state-of-the-art technology devel-
opment and state-of-the-practice application development. For the SSFP, technology development is
nurtured in laboratories and test beds; application development is supported in the SSE. Evolution of
Space Station Freedom is linked both to the laboratories and test beds as well as to the SSE software
factory. These existing facilities should evolve technologically in parallel with the evolution of the
Space Station Freedom.

The following evolution issues relating to the existing facilities have been identified and discussed in
this review of SSFP capabilities for the promotion of advanced automation:

• A mechanism is needed that facilitates two way communication between facilities to allow co-
operative problem solving, interoperability, integration, and coordination of existing and
planned SSFP laboratories and test beds.

• Criteria and procedures must be developed for determining the technology readiness of tools
before they can emerge from the laboratories to the test beds and subsequently to the SSE.

• A mechanism is required to evaluate commercially available tools and test bed developed pro-
totypes for technology readiness. Doorway tests to gain entrance either to the SSE or the MSIT
must be defined.

• SSE support for a spiral/iterative development life cycle model is required for KBS applications
where sufficient knowledge is not available for the complete specification of requirements.
Specifications are required early in the life cycle of the traditional waterfall life cycle model.



Developmentof Verification and Validation (V&V) methods are required for the characteristics
of KBSs that make these systems different from conventional technologies. The problems of
validating the expert and proving the correctness of the transformation of expert knowledge to
code (i.e., rules and facts) must be addressed.

A management approach is required to respond to many of these evolution issues and to manage facility
evolution to accommodate emerging technologies. An integration team with a small number of members
from the new technology area of KBSs is the proposed management model. As new advanced automa-
tion technologies are identified as candidates for the SSFP, additional integration teams would be estab-
lished. An integration team would have the following responsibilities: establish methods for
disseminating the technology knowledge base of that technology; review and evaluate proposals within
the technology area; establish hardware and software standards to maximize interoperability and
resource sharing among laboratories and test beds; coordinate proposals to facilities, systems and
elements; perform peer review of projects involving the technology; and provide feedback to
management on these projects.

FUTURE EVOLUTION PATH ACTIVITIES

The information, related analyses, and contacts established in the preparation of this report on SSFP
capabilities for the promotion of advanced automation provide a sound foundation for further efforts in
defining a comprehensive SSFP advanced automation evolution plan. The objectives of the next phase
of this task are viewed to be the definition of evolutionary goals for SSFP test beds and facilities, and
the definition of evolutionary paths and plans for reaching these goals. In addition, collective
evolutionary goals will be defined for these facilities as a set.

Before the definition of evolution plans, the endpoints (i.e., goals) must be clearly defined. Among the
issues to be addressed in determining these goals are distinguishing criteria, roles, and functions; inter-
operability, commonality, and integration; and the development, demonstration, and delivery environ-
ments. Once the destination has been well defined, the fundamental tools needed to get there must be
identified. A general road map for SSFP decision making is needed in addition to test bed-specific evo-
lution plans. Information from the Transition Definition Program evolution studies and advanced
development tasks, as well as system, test bed, and contractor management will be used to tie these
facility evolution plans closely with plans for the evolution of Space Station Freedom's systems.
Another necessary integrating activity is involvement in the SSE and MSIF requirements definition
process and the development of evolutionary plans for the SSE and MSIF relative to advanced
automation.
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SECTION 1

INTRODUCTION

1.1 BACKGROUND

The use of advanced automation and robotics _vithin the Space Station Freedom Program is motivated
by potential benefits, such as reduced life cycle costs and technology transfer to industry. As advanced
automation and robotics technologies mature, they will be utilized within systems onboard Space Station
Freedom and the space platforms, as well as within control centers on the ground.

Systems which utilize advanced automation may differ from standard flight systems developed using
conventional, procedural, high-level programming languages and associated environments. Advanced
software may be developed within non-standard hardware environments (e.g., Lisp machines, parallel
processing systems, or neurocomputers) with non-procedural development tools (e.g., rule-based
expert system shells, logic-based languages such as Prolog, or artificial neural systems). Advanced,
automated applications utilizing these technologies will need to be tested, validated, and verified before
being flight-certified. These'technologies will need to be elevated to a high level of readiness before they
can be safely used in space.

The National Aeronautics and Space Administration (NASA) has substantial expertise relative to the de-
velopment and testing of conventional software systems for in-flight use; however, little experience or
knowledge exists with respect to engineering, testing, and certifying systems which utilize advanced
automation technologies. For this reason, the NASA Space Station Advanced Development Program,
Strategic Plans and Programs Division (Code ST), Office of Space Station (OSS) is funding an effort to
define evolutionary requirements for ground-based test beds and development facilities related to the
coordinated use of advanced automation for Space Station Freedom. The Intelligent Systems Branch,
within the Engineering Directorate at the Johnson Space Center (JSC), is directing this task.

The Intelligent Systems Branch has varied responsibilities to Space Station Freedom Levels I, II, and
III. The responsibilities center on advising the Space Station Freedom Program (SSFP) on approaches
to the use of A&R technology within the SSFP. The Intelligent Systems Branch acts as both an advo-
cate and an evaluator of A&R activities within the SSFP. The MITRE Corporation has been supporting
the Intelligent Systems Branch with these activities for several years.

1.1.1 Task Purpose

The purpose of this task is to define evolutionary requirements for SSFP test beds and software
engineering, test, and integration facilities, relative to engineering, demonstration, test, integration and
subsequent flight certification of systems utilizing advanced automation technologies for safe use
onboard Space Station Freedom. The resulting requirements and facilities are intended to promote the
science of advanced automation through certain phases of technology readiness. NASA employs the
following 8 levels of technology readiness:

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8

Basic principles observed and reported
Conceptual design formulated
Conceptual design tested analytically or experimentally
Critical function or characteristic demonstration
Component or breadboard tested in relevant environment
Prototype or engineering model tested in relevant environment
Engineering model tested in space
Full operational capability (incorporated in production design)



Automationtechnology,whichisatlevel4 or5,needstobemovedontolevel6 beforeit is readyfor
in-spacetesting.Theautomationtechnologieswhichareatlevel4or5mustbeidentifiedsotheycanbe
consideredascandidatesfor testing.Thefacilitiesdefinedoraffectedbythistaskwill enableautoma-
tiontechnologiesto bebroughttoalevel6stateof readiness.

Theoriginalthrustof thistaskwastowardthedefinitionof requirementsfor oneormore separate Ad-
vanced Automation Test Beds. As the study progressed, the authors came to believe that augmentation
of existing test beds and support facilities was a better solution to SSFP advanced automation needs for
two reasons. First, advanced technologies will need to interface with or be integrated with conventional
technologies. Second, separate Advanced Automation Test Beds might duplicate or compete
unnecessarily with existing laboratories and test beds. This change of focus is compatible with
increased interest from SSFP managers in the evolution of existing facilities in support of advanced
automation technologies. Therefore, the thrust of the task changed from the definition of requirements
for one or more separate Advanced Automation Test Beds to the definition of evolution path
requirements for existing capabilities.

1.1.2 Task Scope

The Intelligent Systems Branch originally asked The MITRE Corporation to generate functional and
facility requirements, as well as costs and schedules, for advanced automation test beds over a three to
six-year period. The task was subsequently redirected toward evolution paths for advanced automation.
For the purposes of this task, advanced automation is defined as the use of concepts and methods of
high-level symbolic inference by a computer and the symbolic representation of the knowledge to be
used in making inferences so as to make a machine behave in ways that humans recognize as intelligent
behavior. The technical scope of this study is restricted to advanced automation only and, therefore,
excludes robotics.

The goal of advanced automation is to assist and/or automate the human control or decision making role
in complex processes where previous attempts have proven impossible, unrealistic, or non-cost-
effective. The key concept is the mimicry of the human inferencing, not the techniques used to
implement this behavior. Therefore, advanced automation includes the use of expert systems,
knowledge-based systems, and other techniques from the field of artificial intelligence (AI), but does
not exclude the use of conventional hardware and software.

1.2 DOCUMENT PURPOSE AND SCOPE

Before functional requirements for the evolution of SSFP facilities supporting software engineering of
advanced automation applications can be defined, a solid understanding of advanced automation and
SSFP capabilities and plans for advanced automation is necessary. The purpose of this document is to
review, for SSFP managers, SSFP automation capabilities and plans, including facilities, applications,
and existing prototypes. This document will serve as a basis for subsequent requirements definition
efforts.

Expert systems provide one of the first commercially viable technologies to emerge from the AI labs of
the nation's universities and research centers. This technology is being used within industry and the
government. Expert systems, especially rule-based systems, are the most likely candidates for early use
of advanced automation applications onboard Space Station Freedom. For these reasons, this report
concentrates on expert systems. Expert systems attempt to emulate human expertise. Knowledge-based
systems (KBSs) are similar to expert systems, except that they do not specifically model human exper-
tise. Nevertheless, the two names are used synonymously in this document. Knowledge-based
systems and other advanced automation technologies are introduced and discussed in Appendix A.
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1.3 APPROACH

This work was divided into the following activities:

• A survey of the advanced automation literature, including

- Software engineering and software life cycles for expert systems

- Verification and validation (V&V) of expert systems

• A survey of SSFP documentation, including

- Facility dcfinitions

- V&V plans

- Advanced automation plans and reports

• Visits to advanced automation test beds and laboratories, including

- NASA facilities

- Academic research facilities

Several studies havc preceded this task and provide a firm foundation for the definition of advanced au-
tomation software engineering facilities for the SSFP. Information resulting from these and other stud-
ies has been used as a basis for this task and to avoid duplication of effort. The following studies are
especially important:

• Ongoing reports of the NASA Advanced Technology Advisory Committee
(ATAC). In response to the interest of Congress in promoting advanced automation and
robotics, ATAC was tasked to consider the needs and limitations of the SSFP and the findings
of other studies, and to provide recommendations to NASA. ATAC reports to Congress (TM-
87566, March 1985).

• Systems Autonomy Technology Program. The OAST has implemented through the
NASA Ames Research Center (ARC) a Systems Autonomy Technology Program (SATP) that
sponsors and pursues the required research, developments, and technology demonstrations for
integration of intelligent autonomous systems into space systems. These efforts include both
core technology research and the aggregation and integration of these core technologies into
meaningful technology demonstration projects where prototype systems will be tested in the
context of realistic application scenarios to assure technology relevancy and maturity for space

mission applications (ARC, November 1987a).

• Space Station Technology Development Mission Requirements Definition for
Advanced Automation Study. A report by the Boeing Aerospace Company defines A&R
development missions for the SSFP. The study ranked these missions according to criteria that
reflect (1) available technology, (2) the economics of using Space Station Freedom, and (3) the
usefulness of the A&R applications supported. This study also provided pointers to space
station facilities and capabilities, and Initial Operations Capability (IOC) hooks and scars needed
for the high-priority missions (Boeing, 1987).

• Space Station Advanced Automation Study Final Report. The purpose of this study
was to perform a rapid analysis of the current and future potential of knowledge-based systems
(often called expert systems) on Space Station Freedom. This study made the following rec-
ommendations pertinent to our efforts: (1) a short list of baseline space station candidate appli-
cations feasible with current technology, including cost and performance estimates, and (2) an
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analysisof knowledge-basedsystemevolutiononSpaceStationFreedom,includingdescrip-
tionsof recommendedhooksandscarstobeprovidedatbaseline(Friedlandetal.,May1988).

TheMITRECorporation'ssupportof SpaceStationFreedomdevelopmenthasincludedsupportfor the
developmentof theData Management System (DMS), Operations Management System (OMS), Space
Station Control Center (SSCC), Space Station Information System (SSIS), Software Support Environ-
ment (SSE), Multi-System Integration Facility (MSIF), Space Station Training Facility (SSTF), and
others. In addition, The MITRE Corporation has provided support to NASA on National Space Trans-
portation System (NSTS) efforts for many years. To extend this broad knowledge base in support of
this task, both NASA and non-NASA advanced automation test beds and laboratories were visited.
Time, man-power, and scheduling constraints limited this tour to the following sites:

• Design and Research Test Beds

Data Management System Test Beds

-- Johnson Space Center Data Management System Test Bed

-- International Business Machines Data Management System Test Bed

Operations Managcment System Prototypes

Thermal Control System Test Beds

-- Ames Research Center Thermal Control System Test Bed

Electrical Power System Test Beds

-- Lewis Research Center Electrical Power System Test Bed

-- Marshall Space Flight Center Space Station Module/Power Management and
Distribution Test Bed

Ames Research Center Advanced Processor Test Bed

• Major Test Bed Integration Activities

Systems Autonomy Demonstration Program Facilities

Space Station Information System End-to-end Test Capability

• Research Laboratories

Ames Research Center

Lewis Research Center

Marshal Space Flight Center

-- Autonomously Managed Power Systems Laboratory Facilities

Johnson Space Flight Center

-- Integrated Communications Officer Expert System Project

-- Transition Flight Control Room

- Camegie Mellon University

- University of Texas at Austin

Where constraints did not allow personal visits to observe the activities, information on test beds,
laboratories, and prototyping efforts was derived from available documentation, phone conversations
with responsible personnel, and interviews with MITRE personnel familiar with these efforts.
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1.4 DOCUMENT ORGANIZATION

The remainder of the document reviews SSFP facilities, capabilities, and plans relative to the develop-
ment and use of advanced automation onboard Space Station Freedom. Section 2 reviews SSFP re-
search and design capabilities, existing SSFP laboratories, and test beds for onboard and ground
systems. Currently, most of the thought and activities related to advanced automation take place within
these facilities. Section 3 reviews operational and support capabilities of the SSFP with respect to
formal software development, test, and integration, i.e., the SSE and the MSIF. These are the facilities
that must evolve to support the application of mature technologies. Section 4 discusses evolution paths
for promoting advanced automation applications toward flight readiness onboard Space Station
Freedom. Supporting information is included in the appendices. Appendix A introduces and defines
advanced automation technologies and applications, defines candidate applications for Space Station
Freedom, and introduces technology readiness levels. Appendix B discusses software engineering and
software life cycles for advanced automation applications. Appendix C lists the key contacts
interviewed during this study.
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SECTION 2

DESIGN AND RESEARCH CAPABILITIES

This section addresses the advanced automation design and research capabilities of the Space Station
Freedom Program (SSFP). Section 2.1 discusses the design and research capabilities of existing SSFP
laboratories and test beds for onboard and ground systems. Section 2.2 discusses major test bed
integration activities. These include the End-to-End Test Capability, the Systems Autonomy
Demonstration Project, and the Space Station Control Center Test Bed. Because there are references to
these integration activities in Section 2.1, they are introduced briefly below. Section 2.3 presents
information on other significant advanced automation research efforts.

End-to-End Test Capability. The Space Station Information System (SSIS) comprises the in-
formation processing and communications capabilities that will be involved in handling operational and
scientific data generated or used within the SSFP. The SSIS will provide end-to-end connection of, and
a variety of information services to, a diverse and geographically distributed user community. This end-
to-end connectivity will reach from the flight systems and payloads, to the ground-based support
facilities, and on to university labs and intemational panner sites. The role of the End-to-End Test Ca-
pability (ETC) in the SSFP is to support SSIS development efforts through advanced integration; that
is, validation of operations concepts and demonstration of needed levels of interoperability in system
designs. The ETC will integrate many SSFP test beds.

Systems Autonomy Demonstration Project Summary. The Systems Autonomy Demon-
stration Project (SADP) is funded by the NASA Office of Aeronautics and Space Technology (OAST)
as part of the Systems Autonomy Technology Program (SATP). This program's goal is to develop,
integrate, and demonstrate the technology to enable intelligent autonomous systems for future NASA
missions. The program objectives will be accomplished by a Core Technology research program
closely coupled with several major demonstrations, the SADP. The SADP activities include a sequence
of progressively more complex demonstrations. This sequence includes the intelligent control and
operation of single subsystems in 1988, multiple subsystems in 1990, hierarchical multiple subsystems
in 1993, and distributed multiple subsystems in 1996.

While the SADP project is not directly funded by the SSFP, these demonstration activities are closely
related to the design of the Space Station Freedom onboard systems and have been and will continue to
be intimately involved with the SSFP test beds and domain experts.

Space Station Control Center Test Bed. The Space Station Control Center (SSCC) will be
the ground operations center for the SSFP and will coordinate and manage the operations of the Space
Station Freedom flight systems as well as many ground systems. SSCC Test Bed activities will inte-
grate many of the SSFP test beds in order to test possible SSCC critical design issues and operations
concepts.

2.1 DESIGN AND RESEARCH TEST BEDS

The SSFP has funded, mainly through advanced development funds, the development of test beds for
many of the Space Station Freedom ground facilities and flight systems. These test beds provide facili-
ties that include the basic capabilities needed to evaluate critical system design issues and operations
concepts. In addition, they provide environments in which to test needed levels of interoperability with
other systems, and also to provide for technical evaluations of commercial products. The following
paragraphs discuss the current capabilities and future plans of these test beds.
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2.1.1 Data Management System Test Beds

The Data Management System (DMS) will provide hardware resources and software services on the
manned base that support the data processing and communications requirements of Space Station Free-
dom systems and flight elements. It will function as an integrating entity providing a common operating
environment and human-machine interface for the operation and control of the orbiting Space Station
Freedom systems and payloads by both the crew and the ground operators.

DMS will provide a family of compatible computers ranging from a single-board computer suitable for
use as an embedded controller to a general purpose processor suitable for hosting system application
software. Each processor will have a compatible set or subset of the DMS operating system. DMS
communication and networking components wiU provide the glue that holds the processing, worksta-
tion, and sensor/effector environments together. DMS will provide several high rate local area networks
as well as lower rate networks and buses to satisfy both the high-bandwidth requirements of payload

experiments and the stringent response-time requirements of core subsystems (SSP, 1988b). There are
two DMS test beds: the Johnson Space Center (JSC) DMS Test Bed oriented toward functions and
services and the International Business Machines (IBM) DMS Test Bed oriented toward hardware
design testing. Throughout this document, unprefaced references to the DMS Test Bed refer only to the
JSC DMS Test Bed.

2.1.1.1 JSC DMS Test Bed

The JSC DMS Test Bed is managed by the Flight Data Processing Branch of the Avionics Systems Di-
vision within the Engineering Directorate at JSC. The test bed was established to evaluate data man-
agement, processing, and system control techniques in a distributed system environment in support of
SSFP requirements. Development and testing of network operating system software, integrating the
network with attached DMS Test Bed nodes, is also a major activity of the test bed (LEMSCO, 1988).
Communication networking and services are provided between multiple subsystems (test beds).
Currently, the core of the DMS Test Bed consists of an Apollo Computer Inc. token-passing ring
network which provides this communication capability. The test bed will transition to Fiber Distributed
Data Interface (FDDI) sometime between May 1989 and January 1990. The FDDI standard specifies the
protocols for a 100-Mbps fiber ring network.

Physical Test Bed. Figure 2-1 is a schematic of the DMS Test Bed network, including inter-
faces to DMS Test Bed nodes. These nodes are connected by the DMS Test Bed fiber-optic token ring
local area network (LAN). Transmission Control Protocol/Internet Protocol (TCP/IP) is used as the
network routing software. Apollo Domain Server Processor (DSP80) computers serve as Network
Interface Units (NIUs) (and Bus Interface Units--BIUs) providing a gateway to subsystem applications
running on end user nodes. Each NIU is connected via an Ethemet link to the end user node computer
which it serves. End user nodes currently include the following computers:

• DEC MicroVAX running VMS

• DEC MicroVAX running UNIX

• Sun workstations running UNIX

• Symbolics Lisp workstations

The Digital Equipment Corporation (DEC) MicroVAX is currently the test bed Standard Data Processor
(SDP) and is fully supported for communication services; the other end user nodes listed are not fully
supported and most applications residing on them are being converted to run on the DEC machines.
Support for other computers is currently undefined. The test bed will transition later to Intel 80386
processors to play the role of the SDPs.
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Also integrated into the network are two Domain Computational Nodes, a DN300 and a DN3000, and a
File Server DSP80. The DN300, known as the Loop Control, is used to monitor and control the opera-
tion of the network. The DN3000, which supports high-resolution color graphics, is used to develop
Crew Work Station network applications in an effort to test and demonstrate the use of network ser-
vices. Attached to the File Server DSP80 is a 500 megabyte disk which provides access to software and

data (LEMSCO, 1988).

Software. The network communications software for the DMS Test Bed is referred to as the
Network Operating System (NOS) and is being developed by Lockheed. The NOS provides guaranteed
message delivery, directory service, authorization checks, and other services to applications supported
by the NOS Library (NOSLIB), a set of library procedures providing access to the NOS. As illustrated
in Figure 2-2, the NOS comprises the Network Interface Element (NIE) and the Network Service Ele-
ment (NSE). The NIE resides in the subsystem computers while the NSE resides in the Apollo NIU
(LEMSCO, 1988).
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Figure 2-2. DMS Test Bed Network Protocol Model
(Source: LEMSCO, 1988)

Currently available DMS services include Network Communications Services, Data Acquisition and
Distribution Services (DADS), Ancillary Data Services (ADS), and File Transfer Services (FTS). The
Network Communications Services are provided by the NOS. The DADS, ADS, and ITS represent
layers of software situated above the NOS and make use of the communications services provided by
the NOS (LEMSCO, 1988). These software services allow the exchange of certain specialized
categories of information between subsystems that support these libraries.

Application software consists of Pascal, Lisp, and Ada code. Older network software, e.g., TCP/IP, is
written in Pascal. All new software development activities relative to network communication services
use Ada.
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Thecurrentfocusof the DMS Test Bed is a transition to a complete Open Systems Interconnect (OSI)
network model using Ada and running on an Intel 80386 processor-based architecture. The 80386 will
play the role of the test bed's SDP. The test bed possesses one 80386 processor and is currently devel-
oping a gateway from the Apollo network to the 80386. The OSI model will probably be implemented
on the Apollo systems first because of the experience base that already exists. The current NOS will
then be discarded and replaced with OSI. The OSI network operating system and a Verdix Ada com-
piler are currently on order.

The test bed has just started to use the X-Windows window interface software and is creating an Ada
application to run on a DEC MicroVAX with all displays using X-Windows. It is possible that X-
Windows will be used as the standard SSFP user interface software.

Integration. The primary users of the DMS Test Bed are the Operations Management System
(OMS) prototyping and testing efforts (see Section 2.1.2), the developers of the ETC (see Section
2.2.1), the SADP multi-system demonstration (see Section 2.2.2), and the SSCC Test Bed activities
(see Section 2.2.3). In each of these activities the DMS Test Bed serves in an integrating capacity.

Currently, the only link from the DMS Test Bed to other Centers is one to Goddard Space Flight Center
(GSFC). The only planned link is the European Space Technology Center (ESTEC) in Holland to con-
nect with their Columbus Module test bed.

2.1.1.2 IBM DMS Test Bed

Contrasted with the functional and service orientation of the JSC DMS Test Bed, which is concerned
mainly with providing DMS services and networking capabilities to multiple users, is the IBM DMS
Test Bed. This facility is oriented more toward design testing through the development of hardware
prototypes relative to actual flight systems concepts proposed by IBM in their Work Package 2 (WP2)
proposal. IBM is a subcontractor to McDonnell Douglas on the WP2 contract.

The use of commercial off-the-shelf (COTS) products wherever possible is stressed by IBM Test Bed
personnel. IBM is looking into COTS products for the DMS Network Operating System. Test Bed ac-
tivities include the development of the Multi-Purpose Applications Console (MPAC), Standard Data
Processor (SDP), Multipurpose Interface Device (MID), and FDDI prototypes.

Multi-Purpose Applications Console Prototypes. The first MPAC prototype developed by
IBM for the National Space Transportation System (NSTS) is based on PC AT technology. The second
prototype is a modified version of the NSTS prototype for Space Station Freedom. Both of these pro-
totypes exhibit the use of multiple input devices (e.g., keyboard, touch panel, track ball, voice card,
hand controller, etc.). The NSTS version uses separate displays for text, graphics and video. The
Space Station Freedom prototype uses one display for simultaneous presentation of text, graphics, and
video. Multiple video windows, both live and static, can be displayed along with simulated operations
scenarios using schematic displays, caution and warning messaging, and strip charts of system
parameters. An easily-used human-computer interface, as well as other software, has been developed
for these prototypes. COTS hardware (e.g., the PC ATs and the video card) and software (i.e., Turbo
Pascal and Turbo C) were used throughout.

The use of COTS products allows the demonstration of these same applications on two other platforms,
an AT class machine using a flat panel display, and a prototype workstation based on a PS/2 Model 80
(Intel 80386 architecture), the architecture proposed by IBM for the Station SDP. It should be noted
that video was not available for these two prototypes; video cannot be displayed on the fiat screen and,
to date, no video card is available for the PS/2. The operating system and software (e.g., windowing
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software)currentlydoes not meet the IBM proposal which includes the AIX operating system and X-
Windows windowing software, but these are targeted for use in the future.

Standard Data Processor Functional Equivalent Unit. IBM is developing a functional
prototype of an SDP, based on their SSFP proposal, called a functional equivalent unit (FEU). The
SDP FEU will consist of hardware compatible with the PS/2 Model 80 but using different size cards
and housing. Each FEU will use the MicroChannel bus for local bus needs and Multibus for global re-
sources. The goal is to achieve complete hardware and software compatibility with the PS/2 Model 80;
the machine the authors were shown could run MS/DOS, OS2, and AIX operating systems and related
software, including the Model 80 diagnostic applications. Again, the use of COTS products was
stressed.

Multipurpose Interface Device 1553 Simulation Sub-Unit. The Multipurpose Interface
Device 1553 Simulation Sub-Unit (MID 1553 SSU) is a distributed processing system that will support
real-time software development, verification, and training for a candidate processor, or Unit Under
Test (UUT). It is assumed that the UUT is based on the Intel 80386 architecture, the architecture of the
Station SDP. The MID 1553 SSU looks very much like a DMS Kit (shown in Figure 2-3 and discussed
in Section 3.1.3.3) and allows the UUT to operate stand-alone while providing an actual 1553 bus and
software to simulate device applications on the other end of the 1553 bus for UUT performance
evaluation. The UUT can act as a bus controller, hardware or software based, or a remote terminal.
The UUT should be able to perform as if it were a part of its operational environment sending data to
and from the 1553 bus unaware that simulations are driving responses and commands to the UUT
(Waechter and Walling, 1988).

Host )

I
( 7
/ ::1 I/

Tester.... jl_l -l-i--I is-s
Evaluabon _ E_ Local Bus

System 1553B
Devices

Figure 2-3. Multipurpose Interface Device 1553 Simulation Sub-Unit
(Source: Waechter and Walling, 1988)
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FDDI Prototyping. IBM is building prototype networking cards using the FDDI standard.
FDDI chips sets have been obtained from the manufacturer, Advanced Micro Devices. These chip sets
are expected to be marketed beginning at the end of 1988. At present, a limited first version of an FDDI
networking card has been developed by IBM, and a second, more advanced, version is expected to be
completed in early 1989. Prototype cards will be delivered to JSC for use in the DMS Test Bed in June
of 1989. The present IBM FDDI dcmo consists of two IBM PC ATs connected by 3 kilometers of fiber
optic cable, using FDDI, that repeatedly send graphical data (i.e., pictures) to each other for display.

2.1.2 JSC Operations Management System Prototypes

A major activity which can benefit from increased automation is the command, monitor, and control op-
erations of flight systems; operations management tasks historically performed by the flight crew,
ground controllers, and engineering support personnel. Space Station Freedom operations management
concepts will be implemented as the Operations Management System (OMS). The OMS will consist of
onboard and ground data systems application software, supporting both onboard and ground personnel.

The onboard portion of the OMS is called the Operation Management Application (OMS), a major
application of the DMS software. The OMA will be implemented as application software residing on the
DMS hardware and will use DMS communications services. The ground portion of the OMS is called
the Operations Management Ground Application (OMGA) and will reside within the SSCC.

The OMS is intended to accomplish much of the activity that is presently performed by ground support
personnel and thus is expected to become increasingly automated as the Space Station Freedom matures.
Advanced automation technologies, as they mature, will be utilized to provide increased autonomy
(Eckclkamp and Rcilly, 1988).

OMS functions include the following:

• Manage and update the short term plan for Station activities

• Coordinate systems, elements, payloads, and crew operations in execution of the short term
plan

• Monitor system, element and payload status

• Manage inter-system, element, and payload testing

• Maintain and log station-wide configuration, activity, and state information

• Detect and manage resource conflicts

• Manage Station-wide caution and waming

• Manage Station-wide fault management and reconfiguration

• Support transaction management

• Provide Station-wide inventory and maintenance management system

• Support onboard training and simulations

Two prototypes, developed by The MITRE Corporation for the Missions Operations Directorate
(MOD), are currently being used within the OMS and ETC activities: the Integrated Status Assessment
and Procedures Interpreter prototypes. These OMS prototyping activities currently take place on the
OMA node of the DMS Test Bed.
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2.1.2.1 Integrated Status Assessment Prototype

The Integrated Status Assessment (ISA) prototype performs station-wide failure diagnosis The OMS
functions performed by the ISA prototype include the following:

• Monitor system and payload status

• Maintain and log global configuration, activity, and state information

• Manage global caution and warning

• Perform global fault management and reconfiguration

The ISA prototype expert system's knowledge base consists of facts about Space Station Freedom
systems (status and configuration) and rules to perform fault isolation. The prototype was designed as a
hybrid system using different methodologies. A model-based representation was used to describe the
different systems; rule-based reasoning was used to encode the knowledge on how to perform the
failure diagnosis; and qualitative modeling was used to describe the state of the various components
(Marsh, 1988). Figure 2-4 shows a schematic and the interfaces of the ISA prototype.

I SYSTEM _._INFORMATION

INTEGRATED STATUS ASSESSMENT EXPERT SYSTEM

KNOWLEDGE BASE

FACTS

_USER

Figure 2-4. Integrated Status Assessment Prototype Schematic and Interfaces
(Source: Marsh, 1988)

It was essential that ISA prototype provide an easy method of building and modifying system models.
The user interface is graphical, mouse-driven, and allows the user to build system models, observe
system operations, and to control and observe the expert system operations. System models are li-
braries of components which can be easily created with the mouse and menus, saved to disk, and
reloaded into the prototype. A library of graphic symbols can be used to represent components and
connections between them.

The ISA prototype is very flexible and can be used to perform diagnosis within many domains. The
initial domain chosen for this prototype was the Ku-band portion of the Communications and Tracking
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System(C&T). TheKu-bandsubsystemwaschosenbecauseit couldbeassumedthatit wouldre-
sembletheShuttlesystemandthereforeaschematicof thesystemcouldbederived.In addition,this
subsystemintersectswithseveralothersystems;forexample,thepowerbussesof theEPS,cooling
loopsof theThermalControlSystem(TCS),theTrackingandDataRelaySatelliteSystem(TDRSS),
andtheDMSnetwork.

TheISAprototypecanbeoperatedinseveralways.Thesimplestmethodallowsfaultstobemanually
insertedintoasystemwithsubsequentdiagnosisof thesourceof thefailure.Simulatedorrealsystem
datacanalsobeusedfor morecomplexoperation.Currently,theISAprototypeis beingusedwithin
theETCOMSintegratedtestdemonstrationswhicharediscussedinSection2.2.1.

TheISAprototypewasimplementedonaSymbolics3600seriesLispworkstationusingZetalispand
theexpertsystemtoolOPS5.At present,ISA isbeingreimplementedonamicrocomputer(IBM-
PC/MS-DOScompatible)usingtheCLIPSexpertsystemshellandtheClanguage.Thisenvironment
morecloselyresemblesthehardwareplatformthatwill ultimatelymakeuptheflightsystems.

2.1.2.2 Procedures Interpreter Prototype

The Procedures Interpreter prototype demonstrates a possible implementation of one of the OMA func-
tions: execute the short term plan. The short term plan identifies the crew procedures to be executed
within certain time and operational constraints. Crew procedures define all structured activities on
manned space vehicles. A crew procedure is a defined, tested set of steps that must be taken to operate
the vehicle or any item on the vehicle (Kelly, 1988a; Kelly, 1988b).

Crew procedures within the NSTS are paper products and are stored in books contained in the Flight
Data File. The Flight Data File is referenced by both the flight crew and ground support personnel.
Procedures for Space Station Freedom will be stored electronically within the Station Flight Data File.
These procedures will be displayed electronically for access by the flight crew. The Procedures
Interpreter prototype allows the electronic storage, access, and display, as well as interactive manual and
automatic execution, of Space Station Freedom crew procedures.

The major components of the Procedures Interpreter are: the human-computer interface, including the
windowing systems and the menu system which drives the user interaction; display definitions,
describing what kind of information to display during procedure execution; Station configuration and
status information; the procedures; an archiving function to keep a history of the procedures executed
and their results; and the Procedure Execution Engine, which accepts the procedures as input and com-
mands the systems to carry out the actions defined in a procedure to be executed. Figure 2-5 shows the
logical components of the Procedures Interpreter as well as the external functions which must interact
with the Procedures Interpreter (Kelly, 1988a).

The Procedures Interpreter prototype was implemented on a Symbolics 3600 series Lisp workstation
using Zetalisp. It is based on an object-oriented paradigm, using Flavors, with the procedure being the
primary object. At present, the Procedures Interpreter is being reimplemented on a DEC MicroVAX us-
mg the Operations and Science Instrument Support (OASIS) teleoperations software package. OASIS
was developed for NASA by the Operations and Information Systems Division of the Laboratory for
Atmospheric and Space Physics at the University of Colorado at Boulder.

2.1.3 Thermal Control System Test Beds

The Thermal Control System (TCS) will maintain the Space Station Freedom equipment and customer
payloads within their allowable operational and non-operational temperature ranges. This will be
accomplished by passive means unless heat loads and environmental constraints require thermal control
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viaanactivefluid interface. The TCS for the core Space Station Freedom comprises an Active Thermal
Control System (ATCS) and a Passive Thermal Control System (PTCS). The ATCS is further
subdivided into four active thermal control subsystems. They are the central ATCS, the internal ATCS,
the Photovoltaic ATCS, and the Attached Payload Accommodations Equipment (APAE) ATCS (SSP,

1988g).
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Figure 2-5. Procedures Interpreter Prototype Schematic and Interfaces

(Source: Kelly, 1988 a)

2.1.3.1 JSC Thermal Test Bed

The thermal system for Space Station Freedom is being developed by Crew Systems Division of the
Engineering Directorate at JSC. The Thermal Expert System (TEXSYS), developed jointly by thermal
engineers at JSC and knowledge engineers at Ames Research Center (ARC), will be used to monitor,
control, and diagnose problems on the Thermal Test Bed.

Physical Test Bed. The Thermal Test Bed is a complete thermal system composed of test arti-
cles (i.e., pumps, radiators, evaporators, condensers, central thermal buss). Several sets of thermal test
articles are being tested and compared. A simplified schematic of an example configuration of the JSC
Thermal Test Bed hardware is shown in Figure 2-6.
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Figure 2-6. Simplified Schematic of the JSC Thermal Test Bed Hardware.
(Source: Wong et al., 1988)

2.1.3.2 ARC Thermal Test Bed

The physical thermal test bed at ARC is a small brassboard of one configuration of the JSC Thermal
Test Bed. Computing hardware at ARC consists of a DEC MicroVAX and a Symbolics Lisp
workstation.

The Information Sciences Division at ARC is responsible for the development, in association with JSC,
ofTEXSYS. TEXSYS will control and monitor one configuration of the thermal test bed and will par-
ticipate in the 1988 SADP single-system demonstration, as well as later SADP demonstrations.
TEXSYS uses model- and rule-based reasoning under uncertainty, and exhibits fault detection,
isolation, and recovery (FDIR) and limited executive control capability in the control and monitoring of
the thermal test bed. Two knowledge-based tools, developed at ARC, were used to implement
TEXSYS: Model Tool Kit (MTK) and Executive Tool Kit (XTK). MTK supports model-based rea-
soning, it can evaluate candidate faults through causal chains to the level of sensor or actuator failures,
and states, time histories, and behavioral predictions are symbolically represented. XTK provides ex-
ecutive control functions. Both of these tools were built on the Symbolics workstation on top of Intel-
licorp's Knowledge Engineering Environment (KEE) expert system shell.

Figure 2-7 shows the TEXSYS architecture. The user interface is called the Human Interface to
TEXSYS (HITEX). HITEX includes graphics and text display, including explanation and procedure
rationalization information. HITEX was developed through interviews with thermal engineers and it
was designed to be flexible and relevant to their needs. HITEX resides on a Symbolics Lisp worksta-
tion.

The Data Acquisition and Control System (DACS) is a conventional controller developed at JSC.
TEXSYS and HITEX are connected to DACS via an Ethernet LAN. The interface between DACS and
the cxpert system software is called the TEXSYS Data Acquisition System (TDAS). DACS run on a
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Figure 2-7. TEXSYS Architecture
(Source: Wong et al., 1988)

DEC MicroVAX II. TDAS runs on the MicroVAX and the Symbolics machines. TDAS acquires data
from DACS, and only passes important data on to TEXSYS when these data change. TDAS also
passes TEXSYS commands to DACS.

Verification and Validation. To test TEXSYS software, test plans have been generated which
include conventional software testing methods as well as simulation and fault injection methods. Faults
can be injected as fake sensor data into either simulated or real data to allow the evaluation of the
TEXSYS software in response to particular faults.

Integration. Testing of the TEXSYS software is scheduled to be completed by September, 1988.
Subsequently, TEXSYS will be shipped to JSC for integration with DACS. JSC will be responsible for
TEXSYS maintenance and further development after the 1988 SADP demonstration.

2.1.4 Electrical Power System Test Beds

The Electrical Power System (EPS) will provide, distribute, and store electrical power for the Space
Station Freedom systems and elements. The end-to-end EPS architecture begins with the collection of
solar energy and extends to but does not include the actual loads or the power supplies within those
loads every place electric power is consumed onboard the manned base. The baseline Space Station

Freedom uses photovoltaic sources to convert solar energy to electric energy (SSP, 1988c).

The Lewis Research Center (LeRC) is responsible for the development of the EPS, that is, the part of
the power system which generates the electrical power. Marshall Space Flight Center (MSFC) is re-
sponsible for developing the Space Station Freedom Module (SSM)/Power Management and Distribu-
tion System (PMAD), that is, the part of the power system which distributes the power within a Space
Station Freedom module. Each of these centers has developed an electrical power test bed related to
their respective responsibilities: generation or distribution of power. In addition, JSC has developed the
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GenericElectricalPowerDistributionandControl(GEPDC)testbed,workingwithLeRCto define
DMS-EPSinterfaces.

2.1.4.1 LeRC Automated EPS Test Bed

LeRC Power System Engineering Division's EPS Test Bed capabilities include a physical power system
test bed, a SSFP Software Laboratory, and an SADP software laboratory. A separate building being
built at LeRC for a new Station Power Systems Facility will house the physical test bed and SSFP
Software Laboratory. It is anticipated that this facility will also house the SADP software laboratory.

Physical Test Bed. The LeRC Automated Space Station Freedom EPS Test Bed, shown in
Figure 2-8, is a 25 kW 20 kHz two channel ring bus system which is capable of supplying simulated
solar dynamic power on one channel and photovoltaic power on the other. This power is convened to
440 VAC 20 kHz and fed to a pair of Power Distribution and Control Units (PDCUs) through a Main
Bus Switching Assembly (MBSA). The power is distributed at 208 VAC to a load network through
appropriate Load Converters which supply necessary load power characteristics (Kish et al., 1988).
The hardware consists of prototype boards and switches, larger in size than future flight hardware, built
by Wcstinghouse for Rockwell International Corporation's Rocketdyne Division, the prime EPS con-
tractor.
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Figure 2-8. LeRC Automated Space Station Freedom EPS Test Bed
(Source: Kish et al, 1988)
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Thepowermanagementcontrolschemeishierarchical.Thelocaldedicatedcontrollersforsource,main
bus,andpowerdistributionareIntel80286microprocessorsandcommunicatewiththepowerelement
smartinterfacesthroughaMIL 1553bcontrollink. ThetoplevelIntelPowerManagementController
overseeslowerlevelcontrollersonanEthemet-likelink. Additional data acquisition and real-time test
bed graphics display terminals are connected to the Power Management Controller via serial and Direct
Memory Access links.

The LeRC EPS Test Bed has three different power sources available:

• Solar Array Simulator, max output of 50 kW at 200VDC

• Solar Dynamic Simulator, up to 15 kW at 1200 Hz

• 20 kHz power supply for bypassing the simulators

At this time, the test bed has no energy storage capabilities. The addition of energy storage devices is
planned.

SSFP Software Laboratory. The LeRC SSFP Software Laboratory is funded by SSFP and
controlled by the LeRC Power Systems Engineering Division of the Space Station Systems Directorate.
This laboratory is developing power system simulation software and comprises the following hardware:

• DEC VAX 11/785

• Applied Dynamics International (ADO AD100

• Texas Instruments (TI) Explorer II-LX

• Apollo workstations

• IBM or IBM-compatible XT and AT microcomputers

The DEC VAX 11/785 serves as a host for the other processors listed above. The ADI AD100 is a
high-speed machine capable of handling large amounts of Input/Output and Analog-to-Digital/Digital-to-
Analog conversion. It is used to run a systems level model of the EPS network (e.g., flow of currents,
states, fault simulation, topology changes). The TI Explorer II-LX is a dual-processor computer
comprising a Motorola 68020 numeric processor and a separate Lisp processor. The numeric processor
runs the UNIX operating system. The Lisp processor currently runs Inference Corporation's
Automated Reasoning Tool (ART). This machine will also run Intellicorp's KEE in the near future.

SADP Software Laboratory. The LeRC SADP software laboratory is funded by OAST and is
controlled by the LeRC Power Systems Technology Division within the Aerospace Technology
Directorate at LeRC. This laboratory is developing power system fault detection and system monitoring
software for the upcoming SADP demonstrations and comprises the following hardware:

• Texas Instruments (TI) Explorer II-LX

• DEC Micro VAX

• Apollo DN4000 minicomputer

° Ethemet network

The TI Explorer runs the UNIX operating system with KEE. The Ethemet network will connect the
Power Systems Technology Division computers with the EPS Test Bed and the Station Software Labo-
ratory.
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TheSADPLaboratoryisutilizingasinglePDCUidenticaltothoseontheEPSTestBed,andanEPS
simulatorfor local testingof interfaces(e.g.,MIL 1553interfacefor dataacquisition)andfor de-
velopmentof faultdetectionandsystemmonitoringsoftware.

AdvancedAutomation.Automatingtheoperationof the Space Station Freedom's EPS falls into
two broad categories: apportioning the available resources (electrical power) and operating the subsys-
tems. The energy apportionment tasks address supervision of the power system's loads, energy stor-
age, and distribution networks. Automating these activities encompasses (1) forecasting the energy that
is available over a fixed time period (planning horizon) for both nominal and partially failed operations;
and (2) apportioning the forecasted energy among the storage system and the loads, reserving enough
energy for periods of eclipse, to maximize experiment productivity, and to respond to emergency power
losses. The task of operating the various subsystems requires (1) qualifying a subsystem's operating
state and performance status; (2) proposing, evaluating, and selecting strategic goals; and (3) planning a
sequence of activities (Dolce and Faymon, 1986a).

A diagram of EPS automation concepts for the initial Space Station Freedom is shown in Figure 2-9.
LeRC's automation strategy is a three-staged approach:

First, given the qualitative symptoms produced by a performance status program which uses
conventional state estimation information, a rule-based expert system would diagnose subsys-
tem failures. The diagnosis program would use fault-symptom association rules to determine
the probable cause of the symptoms
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Figure 2-9. Power System Automation (Initial Space Station Freedom)
(Source: Dolce and Faymon, 1987 c)
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• Secondly,a programthatreasonsusingknowledgeof asystem'sfunction--perhapsfroma
simplemodel--woulddetermineacause,shouldthefirstapproachfail

° A thirdprogramwouldproposefailurecausehypothesesandverify themby experimenting
withtheactualsystem,if thesecondprogramfailed

Theprobablecauseof failurewouldthenbeusedinselectingappropriate strategic goals and in revising
the forecasts of available energy. These concepts are developed further in (Dolce, 1987a; Dolce, 1987b;
and Dolce and Faymon, 1987).

The LeRC knowledge-based system, collectively referred to as the Power Management and Control
System (PMACS), includes the Automated Power Expert (APEX), an associated graphical operator in-
terface known as Human Interface to Power (HIP), and the necessary hardware and software interfaces
to the Space Station Freedom EPS Test Bed control system. APEX, shown in Figure 2-10, consists of
a fault detection/diagnostic system and associated knowledge base residing on the Lisp environment of a
TI Explorer II/LX workstation. A load planner/scheduler is being developed in the C language and will
execute on the TI UNIX processor, with communications via a remote procedure call capability within
the system software. The knowledge base consists of the diagnostic/scheduling rule base and real-time
test bed fact base updated through an Ethemet communications module. Initial fault system prototyping
is being done with KEE 3.1 (Kish et al., 1988).
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Figure 2-10. LeRC EPS APEX Automation Concept
(Source: Kish et al., 1988)

Other capabilities which will be added to the APEX software functionality include system health moni-
toring and trend analysis, which is important for incipient fault condition detection. The EPS knowl-
edge-based fault system will not only be heuristic, but incorporate causal modeling. System compo-
nents and their attributes, including functional, behavioral, and interactive characteristics, will be repre-
sented within the knowledge base in a structured fashion. The behavioral properties must describe cur-
rcnt state information as well as single or multiple fault expectations. These underlying relations, which
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areoftenlostormaskedin typicalrole-basedsystems,needtobeincorporatedwithintheexpertsystems
(Kishetal., 1988).

JSC'sMissionPlanningandAnalysisDivision(MPAD)isdeveloping,withtheassistanceof Inference
Corporation,anAdaversionof ART. ncethissoftwarebecomesavailable,LeRCwill beaBetatest
siteandwill thenbeableto implementKEE,ART andAdaARTversionsof thesameapplication
softwareforcomparison.

Integration. TheschedulersbeingdevelopedatLeRCconcentrateonlyonEPSconstraintsand
arenotcoordinatcdwith theschedulingof otherresourcessuchasthermalcontrol,communications
bandwidth,crewtime,etc. Parallelschedulersfor eachSpaceStationFreedomsystem,eachwith its
ownconstraintsetandconflictresolutionstrategies,will berequired.LeRCfeelsthelargestSpaceSta-
tionFreedomdevelopmentissuewill bethistypeof cooperativeproblemsolving,thatthisis anOMS
responsibility,butareuncertainastohowOMSisworkingtosolvethisproblem.LeRCwasnotaware
of anestablishedmechanismfortwo-waycommunicationwithOMSdevelopers.

Verification and Validation. No formal Verification and Validation (V&V) plans exist.
Informal V&V of the knowledge-based system software within the LeRC SS EPS Test Bed will consist
of interactive simulation to determine if the system performs correctly, that the software does not
jeopardize the hardware, and that the test bed is robust. This simulation may not execute in real time.

2.1.4.2 MSFC Power Management and Distribution System Test Bed

The Electrical Power Division of the Science and Engineering Directorate of MSFC is responsible for
developing the Space Station Freedom Module (SSM)/Power Management and Distribution System
(PMAD); that is, the part of the power system which distributes the power within a Space Station
Freedom module. The SSM/PMAD is part of the MSFC Autonomously Managed Power Systems
Laboratory (AMPSLAB).

Space Station Freedom modules are the physical Space Station Freedom structures in which the crew of
the manned base will live and work; two examples are the U.S. habitation and laboratory modules. The
SSM/PMAD will accept 20 kHz power from the station EPS and distribute it to the various loads inside
these modules. These loads include the Station subsystem loads such as the pumps for the Environ-
mental Control and Life Support System (ECLSS), as well as the experimental payloads and crew tools,
including recreational facilities (Kish et al., 1988).

The Space Systems Company of the Martin Marietta Astronautics Group in Denver, Colorado, has been
working with MSFC for the past three years in defining and developing an advanced development
SSM/PMAD test bed to advance the state-of-the-art in space power systems power management and
distribution (Weeks, 1988). This test bed will function as a highly intelligent load on the LeRC Space
Station Freedom EPS Test Bed for the 1990 SADP demonstration. An SSM/PMAD human interface
module will be developed for the 1990 demonstration and will provide an intelligent interface to
PMACS data from LeRC (Kish et al., 1988).

Physical Test Bed. The SSM/PMAD Test Bed, shown in Figure 2-11, employs single-phase
208 volt, 20 kHz electrical power and is large enough to operate a substantial number of realistically
sized loads simultaneously and autonomously (Freeman et al., 1988). Autonomy has been embedded
down to the lowest level processors (LLPs). These processors are 68010-based systems with each LLP
managing its load center, subsystem distributor, or PDCU. Load centers distribute electrical power to
equipment racks. Subsystem distributors distribute electrical power to separable subsystems. A
VME/10 minicomputer (the communications and algorithmic controller) controls the test bed commu-
nications (Ethemct, and RS-232 and RS-422 serial data networks) and directs the LLPs (Kish et al.,
1988). Software for the LLPs and the VME10 is written in Pascal.

23



Pavload Data Bus

Power Ring Bus A

. .i

SpaceStation
Fault Recovery Simulator

Expert System
(FRAMES) Interface/

Graphics

Load Prioritization
List Management
and Load Enable

i! iii!

;_!_;Scheduler Expert

iiiiiiii Systems
_.;!_;i (LPLMS, LES)

• |, I
Communications

I

and Algorithmic J Ethernet
Controller !

I RS 422

Power Data Bus

Power Ring Bus B

!B

_ubs..yst_em Load Load

)is.:..ir_u_or[A B Center B ..Cei.;._nt_r_.,

 ,,,qrTT

Load

Center A B

Remote Power Remote Controlled

" Controller [] Circuit Breaker
1 or 3 kW 10 kW

Remote Bus

i_ Isolator
15 kW

Subsystem

Distributor

kkP: Lowest Level Processor

SIC: Switchgear Interface Controller
ADC: Analog-to-Digital Card

Figure 2-11. MSFC SSM/PMAD Test Bed
(Source: Lollar and Weeks, 1988)



The SSM/PMAD Test Bed includes the following computing hardware:

• VME 10 minicomputer

• Xerox 1186 workstation

• Symbolics 3620 workstation

Separate copies of the SSM/PMAD are housed at both MSFC and Martin Marietta (Denver, Colorado).

Advanced Automation. The test bed features three cooperating knowledge-based systems, the
Loads Priority List Management System (LPLMS), the Loads Enable Scheduler (LES), and the Fault
Recovery and Management Expert System (FRAMES), as shown in Figure 2-12.

Xerox 1186 Symbolics 3620

I Ethernet I

1
Communications and

Algorithmic Controller

VM E/10

Figure 2-12. SSM/PMAD Automation Architecture
(Source: Kish et al., 1988)

The prioritization expert system is called the LPLMS. The LPLMS keeps up with the dynamic priorities
of all payloads while developing current load shedding lists for the LLPs every 15 minutes in
preparation for contingencies which necessitate load shedding (Lollar and Weeks, 1988). Load
prioritics often change. As a resource nears depletion (and, therefore, possibly becomes more mission
critical), its priority may change. For example, 60 day non-interruptible crystal growing experiment
may have a different priority on day 59 than it had on day 2. LPLMS ensures that the system will never
erroneously shed a critical payload.

The communications and algorithmic controller develops individual load center load shedding lists from
the LPLMS list and downloads the information to the LLPs every 15 minutes. After quickly developing
a load shedding list, the LPLMS then refines the list in a background task. The LPLMS is object ori-
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ented,usesheuristicsearch,andusesinputsto alterthewayit runs.LPLMSis implementedin Com-
monLispandresidesonaSymbolicsLispworkstation(Kishetal.,1988).

TheschedulerexpertsystemiscalledtheLoadEnableScheduler(LES).LESschedulesandresched-
ulesthepayloadsfor theSSM/PMADtestbed.LESisactuallyaspecialversionof MAESTRO,the
MartinMariettaresourcescheduler.LESusesseveralAI technologies,includingobject-orientedpro-
gramming,heuristicallyguidedsearch,activitylibrary,expertfunctions,etc. LESschedulesloadswith
regardtonumerousresourceconstraintssuchasavailablecrewmembers,suppliesof payloads,interde-
pendenceof payloads,powerprofiles,thermalstatus,etc. LESis alsowrittenin CommonLispand
residesonaSymbolicsworkstation(Kishetal.,1988).

Thefault recoveryexpertsystemis calledtheFaultRecoveryandManagementExpertSystem
(FRAMES).FRAMESwatchesovertheentireSSM/PMADtestbedoperationlookingfor anomalies
andimpendingfailures.Thefunctionalityof FRAMESactuallyextendsto thelowestlevelprocessors
in thetestbedfor comprehensivefaultmanagementofthetestbed.FRAMESisresponsiblefordetect-
ingfaults,advisingtheoperatorof appropriatecorrectiveactions,andwithintheloadcentersandsub-
systemdistributors,autonomouslyimplementscorrectiveactionsthroughpowersystemreconfigu-
ration.Thesystemwill carryouttrendsanalysisseekingincipientfailuresandsoftshortsaswellas
opencircuits.FRAMESwill handlesoftandmaskedfaultsin theswitchgear,thecables,andthesen-
sors.Hardfaultswill behandledquicklybytheswitchgeartoprotectthePMADsystem.FRAMESis
implementedin theCommonLispObjectSystem(CLOS)andresidesonaXerox1186AI workstation
(Kishetal., 1988).

Thefrontendto LEScontainsinterfacestoLESandto theLPLMSandtheuserinterface.Thetestbed
iscapableof nmningin anautonomousclosed-loopmode.Whenafaultor anomalyoccursin the
SSM/PMADtestbed,FRAMESdetects,diagnoses,andrecommendscorrectiveaction(automatically
implementingcorrectiveactionswhereappropriate).Followingcorrectiveactions,LESdeterminesif a
newpayloadscheduleisnecessaryand,if so,reschedulestheloadsin accordancewiththenewconfig-
urationof theSSM/PMAD.TheLPLMSderivesanewloadsheddinglist fromthenewscheduleand
forwardsit tothecommunicationsandalgorithmiccontrollerwhichbreaksthenewloadsheddinglist
downinto individualloadcenterandsubsystemdistributionloadsheddinglists. Theselocal load
sheddinglistsarethendownloadedintotheappropriateLLPs(Kishetal.,1988).

SSM/PMADStatus. TheSSM/PMADbreadboardis still beingcompletedatthetimeof this
writing. Thescheduler,LES,iscompletedasis theLPLMSprioritizationexpertsystem.FRAMESis
almostcompletedwithsomefinalcodingtobeperformed.Theconventionalsoftwareisessentiallyfin-
ished.Thenexttaskis theoverallintegrationandtesting.TheSSM/PMADhasbeenselectedby
NASAtobeaparticipatingtestbedintheSADP1990demonstration.

Integration. As stated above, MAESTRO, the scheduler used within LES, is proprietary to Mar-
tin Marietta. It can take into account numerous constraints external to the power system. Part of the
scheduling functions performed by LES could be considered to be OMS responsibility. As with the
LeRC scheduler discussed above, MSFC personnel are not aware of current plans for the OMS to pro-
vide these functions, nor were they aware of the proper mechanism for obtaining this information or for
providing information to the OMS development efforts.

Verification and Validation. The MSFC SSM/PMAD contact was uncertain regarding plans
for V&V of the knowledge-based system software. Any testing probably will be informal, ad hoc, trial
and error testing using test cases.

Other Issues. Some concern was expressed about hooks and scars for advanced automation
within the SSFP plans. A constrained Space Station Freedom budget may reduce knowledge-based
system development for use on the manned base. The fear is that knowledge-based system applications
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maynotbedevelopedfor SpaceStationFreedomunlesshooksandscarsfortheirevolutionaryinclusion
areworkedinto SSFPplans,especiallyin the ProgramDefinitionandRequirementsDocument
(PDRD).

2.1.4.3 JSC Generic Electrical Power Distribution and Control Test Bed

The Generic Electrical Power Distribution and Control (GEPDC) Test Bed, shown in Figure 2-13, pro-
vides a simulation of the Space Station Freedom power generation and distribution system to evaluate
candidate solutions to the Space Station Freedom power system. The GEPDC was developed by the
Power Systems Group within the Avionics Systems Division at JSC, working with LeRC to define
DMS-EPS interfaces, in support of the ETC integration efforts by providing a simulated electrical power
system. A scaled 75 kW of 20 kHz power can be simulated through the use of an Intel-based bread-
board Power Management Controller (PMC), functional simulation, and math models. Nominal
electrical power supplied is 90% to 133% of the 75 kW with the 133% power (100 kW) available for
eight hours out of every 24 hour period. The GEPDC breadboard 4 KVA system scales the power to
100 kW simulated levels. Two breadboard DC power supplies emulate two of the four Space Station
Freedom Photovoltaic generation modules. Intel processors simulate the battery energy storage and
load profiles. Control inputs and failures are simulated or induced by the operator of the Intel proces-
sors. The standard DMS ADS/DADS DMS systems services are used to communicate with other nodes
on the DMS LAN (Ulmer, 1988).
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Figure 2-13. Generic Electrical Power Distribution and Control Test Bed
(Source: Ulmer, 1988)

2.1.5 JSC Guidance, Navigation, and Control Emulator Test Bed

JSC's Guidance, Navigation, and Control System (GN&C) is divided into the following two major
subsystems: core GN&C subsystem and GN&C traffic management subsystem. The core GN&C
subsystem provides attitude state maintenance and orbital state maintenance of the Space Station
Freedom. In addition, the core GN&C subsystem supports the pointing of the power system and
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andprovidesSpaceStationFreedomstateandattitudeinformationto othersystems'andusers.The
GN&Ctrafficmanagementsubsystemis responsiblefor controllingincoming,outgoing,andstation-
keepingtrafficwithintheCommand and Control Zone (CCZ) of Space Station Freedom; controlling
docking and berthing operations; monitoring the trajectories of vehicles and objects which may intersect
the orbit of Space Station Freedom; predicting potential collisions; and supporting flight planning of the
traffic around the Space Station Freedom (SSP, 1988d).

The Avionics Systems Division's GN&C Emulator Test Bed allows the evaluation of different types of
data bus architectures, the evaluation of SDP prototypes, the evaluation of the use of Ada in a dis-
tributed environment, and integration with other test beds. The test bed consists of a set of small com-
puters connected with communication busses, emulating the distributed architecture, software, pro-
grams, and other functions of the GN&C System. Figure 2-14 shows the configuration of the GN&C
Emulator Test Bed. Physical hardware consists of the following computers and networking equipment:

• 5 Compaq Desk Pro 286 PCs (IBM AT Class)

• 5 Compaq Desk Pro PCs (IBM XT Class)

• VME System (Dual Motorolla MC 68020 processors)

• DEC MicroVAX II Lab Series Processor

• HP 1000 Series F Computer

• Dual IEEE-488 Spec LANs

The MicroVAX will figure into future integrated testing when SDP functions are moved to it. The HP
1000 computer is used to support test data archiving and post processing. The dual LANs operate
independcntly.

f DMS Testbed )
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SDP ]MicroVAX" Emulator

[ GN&C Local Bus

I 1 1 I I
Emulator Emulator Emulator Emulator Emulator DESKPROs

286

[ I ! I
I GN&C Global Bus

Emulator 68020

I

Figure 2-14. GN&C Emulator Test Bed
(Source: Ulmer, 1988)
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TheGN&Chardware,includingsensorsandeffectors,is currentlyemulatedusingmathmodelsresi-
dentin individualmicroprocessors(CompaqDeskPros).Asthetestbedevolves,thesemodelswill be
replacedwithprototypeflight systemhardware(e.g.,SDPs)asit becomesavailable.Oneof thetest
bedcomputers,theOnBoardCheckOut(OBCO)computer,storestheSpaceStationFreedomequa-
tionsof motion,masspropertiescomputations,environmentequations,andsimulationcontrolprovi-
sions.TheOBCOis connectedtoeachof theothercomputersthroughaseparatedatabus.Thetest
configuration,therefore,hasthreeseparateanddistinctdatabusses:theGN&Clocalbus,theOBCO
bus,andasubsetof theDMSglobalbus(Ulmer,1988).

AdvancedAutomation.TheOBCOapplication is a prototype of the OMS testing function and is
divided into three categories: Orbital Replacement Unit (ORU) level testing and checkout, intra-system
testing, and inter-system testing.

Integration. The first two OBCO categories will be demonstrated during Phase II of the ETC
Integrated Testing (see Section 2.2.1) using the OBCO application in concert with the GN&C simulated
flight hardware. During these tests, redundant hardware will be activated and brought up to speed from
a cold standby mode. Functional tests will be completed before this hardware will be allowed to proccss
flight critical data. These tests will include wake up self tests, mechanical functional tests, and interface
communication tests. In addition, the Reaction Control System (RCS) will be checked out with
communication functionality tests and hot fire tests of the simulated thrusters scheduled for reboost
(Ulmer, 1988).

2.1.6 JSC Communications and Tracking System Test Bed

JSC's Communications and Tracking System (C&T) provides all Space Station Freedom manned base
communications services including audio, video, space-to-space communications, and space-to-ground
communications. The C&T system also provides the necessary tracking services to GN&C. The sys-
tem has been divided into six subsystems, each representing a major class of service or function.

The space-to-space subsystem provides all communications with the NSTS, Extra-Vehicular Activity
(EVA), Orbital Maneuvering Vehicle (OMV), Mobile Servicing Center (MSC), and other future Space
Station Freedom Program Elements (SSFPEs). The space-to-ground subsystem provides communica-
tion via the Tracking and Data Relay Satellite System (TDRSS) to the ground data networks. The audio
subsystem provides all the internal and external voice communication for the Space Station Freedom.

The video subsystem provides all the intemal and external video for the Space Station Freedom. The
tracking subsystem consists of a Global Positioning System (GPS) receiver/processor with provisions
to accommodate laser docking and radar in the future. The control and monitor subsystem provides for
the management of all the C&T resources as well as the C&T data distribution function (SSP, 1988a).

The C&M Test Bed is used to develop and evaluate candidate software for the Space Station Freedom
C&T system. The configuration of the test bed is shown in Figure 2-15 (Ulmer, 1988).

Physical Test Bed. The test bed consists of (at least) the following hardware:

• Symbolics 3670 Lisp workstation

• SUN 3/260 workstation

• DEC VAX 11/750

• DEX MicroVAX II

• Apollo NIU
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• Local Ethemct LAN

Software. The software components of the test bed consist of a Mass Storage Unit Configuration
and Status Data Base, residing on the VAX 11/750 and Subsystem and Space-to-Ground simulators

residing on the MicroVAX, as well as two expert systems.
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Figure 2-15. C&T Control and Monitoring Test Bed
(Source: Ulmer, 1988)

Advanced Automation. A Local Controller Fault Manager Expert System, built by TRW, was
implemented on the Sun 3/260 workstation. A Central Processor Resource Manager, built by Harris,
was implemented on the Symbolics 3670 using ART. These systems are currently being converted to C
and Ada to facilitate their use on the targeted flight processor environment (i.e., Intel 80386) and the
UNIX operating system (Ulmer, 1988).

Integration. The C&M Test Bed is interfaced with the DMS Test Bed network. Integrated tests

are planned to demonstrate the interaction between the C&T C&M Test Bed, OMS, GN&C, and the
SSCC. At a later date, the prime C&T subcontractor, RCA, will test flight applications software in the
C&M Test Bed using SDP engineering models.

2.1.7 ARC Advanced Architecture Test Bed

The Advanced Architecture Test Bed is managed by the Information Sciences Division at the NASA
ARC. The goals of the test bed are to investigate the hardware and software issues on onboard multi-
processor systems applications to NASA missions, and to provide the required prototyping capability
for transfer of the architecture technologies to specific NASA projects. Technical problems addressed
by this test bed include the following:

• Real-time fault tolerant architectures for knowledge-based multiprocessor systems including
dynamic system reconfiguration using on-chip components
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• Management and control of large distributed knowledge data bases in excess of 10 gigabytes
including dynamic memory allocation and reallocation

• Operating systems for a distributed heterogeneous environment

• Validated compilers and data translators for transition from a development environment to an
Ada-based operational environment optimized for real-time system performance

• Optimized run-time performance for radiation-hardened modules

• Automated load scheduler for efficient use of the mulriprocessor environment

• Technology concepts for high speed memory access and data transfer time

• Definition and evaluation of books and scars guidelines for processor evolution and user trans-
parency

Physical Test Bed. The Advanced Architecture Test Bed, shown in Figure 2-16 consists of two
networks, fiber optic dual redundant counter rotating token-ring and Ethemet, connected by a level 3,
TCP/IP gateway. The test bed includes advanced hardware and software technologies and concepts
from academia (from collaborative research grants), industry (beta hardware and software, of which
there are five participating contractors including TI, IBM, DEC, IIM, and Symbolics), and DARPA
(Compact Lisp Machine) (Lum, 1988).
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FIGURE 2-16. Advanced Architecture Test Bed
(Source: ARC, 1988)
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ThishardwareincludesaJPLMAX processor,aDEC VAX 8800, a DEC VAXStation II/GPX, a Texas
Instruments Compact Lisp Machine (CLM), an Integrated Inference Machines (IIM) SM45000, a
GigaMos Systems Lambda, a Sequent B8000, a Sun Microsystems workstation, an Intel 80386
processor, and an SVMS multiprocessor. The TCP/IP gateway is a Proteon Pronet-80 P4200 Router.

Simulation models for distributed multiprocessor systems including network configurations complement
the hardware research test bed--these computer models run on the Symbolics 3675 and the DEC 8800.
The results from the research test bed provide a cross-check on the contractor's development efforts
during the three development phases for the Spacebome VHSIC Multiprocessor System (described
below) (Lum, 1988).

SVMS. The Spaceborne VHSIC (Very High Speed Integrated Circuit) Multiprocessor System
(SVMS) is intended for real-time and non-real-time AI applications onboard the Space Station Freedom.
The SVMS is being designed to overcome the limitations of numeric processors with respect to large,
real-time, knowledge-based system. Its architecture includes a 32-bit numeric processor, four symbolic
processors, and global memory. The objectives of the SVMS effort include the following:

• Self-testing, Self-maintaining, Automated Configuration

• Accommodation of one 32-bit numeric processor

• Accommodation of four 40-bit symbolic processors

• Optical interconnects

• VLSI/VHSIC technology and module compatibility

• Concurrent Common Lisp and Ada languages

• Minimum of 10 rads radiation resistance, no SEUs

• 25 MIPS sustained uniprocessor execution rate (target of 40 MIPS)

Phase I of the SVMS effort, scheduled for completion in April 1988, is the system feasibility effort in-
cluding tradeoff analysis and development of computer simulation models. The Phase I team consists
of TRW and Symbolics, Inc. who were selected through competitive procurement. Phase II, a 30-
month effort scheduled for award during FY-88, is for the development of two competing brassboard
systems containing flight-qualifiable components and the operating system environment. Phase III, a
48-month effort, is for the development of one flight-qualified system scheduled for delivery in early
CY-95. One contractor from Phase II will be selected to do the Phase III effort (Lum, 1988).

LANES. The Local Area Network Extensible Simulator (LANES) provides a method for simulating
the performance of local area networks. LANES incorporates two network models. One is a model of
a FDDI ring network. The other is a Star*Bus. These models each simulate a unique link layer and
share a common network and load layer. The simulation is designed to determine performance charac-
teristics of FDDI and Star*Bus under a variety of loading conditions. It allows the user to objectively
compare the performance of the two network architectures (LANES, 1987).

DPNS. The Distributed Processing Network Simulator (DPNS) allows the definition of a network ar-
chitecture and simulates the running of a workload by that network to determine the effects of the net-
work architecture on system performance. It allows workloads of arbitrary complexity to be defined
and run on a model of the network's data processing resources. This will determine what type of re-
sponse can be expected from those resources. DPNS is a distributed processing simulator. This means
that resources utilized by a given job can be spread throughout a network. Centralized processing can
also be modeled.
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Integration.A majorpurposeof theAmestestbedis toinvestigateadvancedcomputingconcepts
andto feedtheresultsto JSCfor possibleusewithin theDMSTestBed. Amesplansto transitionto
FDDIassoonasit isavailable.Oneof theSVMSbrassboardswill bedeliveredto JSC.Thefinal
designwill notbetestedfor twoyears.However,Amesneedstokeepcurrentonthedetailsof the
DMSTestBeddesigntoensuretheSVMS-DMSinterfaceiscorrect.Lackof adequateDMSdesignin-
formationcouldresultindesignandoperationaldecisionsthatcouldcausecompatibilityproblemsand
resultin costlychanges.

Importantintegrationissuesarethecoordinationof interfacedefinitionsbetweenall testbeds,
communication,andcommonworkingagreementsfor technologytransfer.Thelevelat whichthe
technologiesaretransferred,of course, defines the requirements for specifications, agreements, and
communication. A major problem arises when software or hardware is delivered to one center from an-
other if the required interfaces have not been defined. In one instance, a delivered prototype sat around
for several months because the receiving center was not prepared to accept it and no money had been
budgeted for the interface definition effort.

2.1.8 Other DMS Nodes

The Human Computer Interaction Node and the MPAC Displays and Control Node are participants in
the Phase II ETC integration activities.

2.1.8.1 JSC Human Computer Interaction Node

The Manned Systems Division's Human Computer Interaction (HCI) Node of the JSC DMS Test Bed
is shown in Figure 2-17 and is a prototype configuration which will allow the exploration of human
factors issues through the presentation of information produced by the OMA and core systems nodes.
The HCI Test Bcd consists of a DEC MicroVAX running the VMS operating system.

The two major software components of the HCI are BLOX, a user interface management system
(UIMS) used to build, maintain, and display graphical user interfaces, and the HCI Ada Executive
(HAE) which uses DADS to access system data from other nodes and present it for use by BLOX pro-
grams.

For Phase II, the HCI prototype will be limited to monitoring systems. Command capabilities are
planned when the systems and the network services are more mature (Ulmer, 1988).

2.1.8.2 JSC MPAC Displays and Control Node

The Systems Development and Simulation Division's MPAC Displays and Control (D&C) Node,
shown in Figure 2-18, is used for the prototyping of the fixed MPAC hardware configuration and on-
board crew controlling and monitoring activities in a Space Station Freedom environment.

Currently the MPAC D&C Node consists of a DEC MicroVAX II running the VMS operating system, a
Raster Technology Model One/80 graphics terminal, and a Compaq 386 PC with a Tektronix 4107 ter-
minal emulator. The display and control function will use resources generated by the Dataviews UIMS
package. Communications over the DMS Test Bed network will use driver routines employing both the
DADS and ADS services.

Initial applications of the MPAC D&C Node will be limited to monitoring Phase II operations. Subse-
quent enhancemcnts will include a command generation capability in accordance with OMS Test Bcd
defincd procedures (Ulmer, 1988).
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2.2 MAJOR TEST BED INTEGRATION ACTIVITIES

2.2.1 End-to-End Test Capability

The Space Station Information System (SSIS) comprises the information processing and communica-
tions capabilities that will be involved in handling operational and scientific data generated or used
within the SSFP. The SSIS will provide end-to-end connection of, and a variety of information scr-
viccs to, a diverse and geographically distributed user community. This end-to-end connectivity will
extend from the flight systems and payloads, to the ground-based support facilities, and on to university
labs and international partner sites.

The role of the End-to-End Test Capability (ETC) is to support SSIS development efforts through ad-
vanced integration; that is, validation of operations concepts and demonstration of needed levels of in-

tcroperability in system designs (JSC, 1988a). To this end, the ETC activities will require the in-
tegration of many SSFP test beds.

These efforts are complementary to, but do not overlap, the role of the Multi-System Integration Facility
(MSIF). The MSIF performs integration testing on developed products prior to flight certification. The
ETC is to provide an environment for early design activity, thereby clearing at least part of the path to-
ward successful MSIF integration. The ETC is not concemed with flight qualification and it is not a
formal verification environment (JSC, 1988a).

Prior to ETC integration activities, most SSFP test beds functioned as stand-alone entities. The ETC
attempts to integrate these test beds to test SSIS interoperability. An early focus of the ETC is to
demonstrate prototype integrated operations of onboard systems. The goals of the ETC integration ac-
tivities include the following objectives (Kelly, 1988c):

• Development and testing of operations concepts for distributed, hierarchical management of
Space Station Freedom systems, including OMS-system and ground-onboard functional parti-
tions and interfaces

• Development of operations concepts for individual systems, including internal system functions
and external interfaces

• Determination of requirements for real-time operations including communications, data han-
dling, commanding, and caution and warning

The OMA node served as a focal point in early ETC demonstrations. Phase I consisted of the integra-
tion of the JSC DMS Test Bed, the OMA Node, and the GN&C Emulator Test Bed to perform a Space
Station Freedom reboost scenario, leaving hooks and scars for adding other systems simulations as they
become available. Figure 2-19 shows the ETC Phase I DMS/OMA/GN&C integrated testing schematic.
During the execution of this scenario, if the Integrated Status Assessment prototype concludes that an
action should be taken (i.e., a command should be sent), it sends a message to the Procedures Inter-
preter, which filters it, if necessary, and issues the appropriate commands using network communica-
tions services provided by the DMS Test Bed. These commands are sent to the GN&C Executive,
hosted on a DEC MicroVAX on the GN&C Test Bed. The Procedures Interpreter may also request the
transmission of data (e.g., status information) from the GN&C Test Bed. During procedure execution,
the Procedures Interpreter monitors data from the systems, and by interpreting the status information

provided, monitors the progress of the procedure (Kelly, 1988a). The implementation of Phase I was
completed and was widely demonstrated.
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PhaseI ETCintegrationexhibitedthefollowingaccomplishments(Kelly,1988c):
• Autonomoussystemoperationswhenappropriate
• Integrationof SpaceStationFreedomactivitiesbyOMAwhenappropriate
• Differentdegreesof automationforOMA
• DifferentlevelsofcautionandwarningbyOMA
• Crewoverrideof OMAautomation

PhaseII ETCintegrationwill functionallyintegrateadditionalsystemsimulationsandsupportnodes
intothereboostscenariousedinPhaseI. ImplementationofPhaseII is inprogress.PhaseII integra-
tion, illustratedin Figure2-20by theshadedboxes,will includethefollowingtestbedsandnodes
(Ulmer,1988,Kelly,1988c):

• JSCDMSTestBed
• PhaseII OMANode
• GN&CEmulatorTestBed
• C&TTestBed
• TCSTestBed
• OMGANodewithintheSSCCTestBed
• GEPDCTestBed
• HCITestBed

• D&CTestBed

ETC FuturePlans.FutureETCintegrationeffortswill emphasizenodesthatareremotetoJSC
andadditionalscenarios.TheDMSTestBedwill becometheequivalentof onenodeof abroaderSSIS
End-to-EndTestBed. Futureintegrationanddemonstrationscouldincludethefollowing(Kelly,
1988c):

• HierarchicalOMSfunctions(e.g.,viaanelement OMS capability at MSFC)

• Payload operations (e.g., processing telemetry from an onboard science instrument controlled
by the University of Colorado at Boulder, or the integration of the Payload Operations Integra-
tion Center at MSFC)

• International panner participation

• Functions external to the manned base (e.g., the Platform Management System at GSFC)

• SSIS data management issues

• Additional OMS functions

• Ground/onboard interactions (OMA-OMGA)
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2.2.2 SystemsAutonomy Demonstration Project

The System Autonomy Demonstration Project (SADP) is funded by the NASA OAST as part of the
SATP. This program's goal is to develop, integrate, and demonstrate the technology to enable
intelligent autonomous systems for future NASA missions. The program objectives will be
accomplished by a Core Technology research program closely coupled with several major
demonstrations, the SADP. The critical core technologies include: task planning and reasoning, control
cxecution, operator interface, and system architecture and integration. The core technology
development will be implemented at NASA centers, universities, and industrial institutions. These
efforts will be at the laboratory breadboard integration level and will be carried to the point where they
can be transferred to technology demonstration projects. The SADP activities include a sequence of
progressively more complex demonstrations. This sequence includes the intelligent control and
operation of single subsystems in 1988, multiple subsystems in 1990, hierarchical multiple subsystems
in 1993, and distributed multiple subsystems in 1996. A Memorandum of Understanding between
OAST and OSS conceming advanced automation was signed in January 1988 with an accompanying
Memorandum of Agreement which provides for the coordination and transfer of SADP-developed
technology to the SSFP.

The 1988 single system demonstration will be a joint effort between ARC and JSC for the autonomous
thermal control system operations for Space Station Freedom. The 1990 multiple system demonstration
will be a joint effort between ARC, LeRC, MSFC, and JSC for the autonomous control of the thermal
and clectrical power systems for Space Station Freedom. The 1993 hierarchical demonstration and the
1996 distributed demonstration will evaluate and validate methodologies for expert system control of
multiple subsystems through hierarchical and distributed architectural strategies, respectively (ARC,
1987a; ARC, 1987b).

2.2.2.1 1988 Single System Demonstration

The 1988 single system demonstration is a joint effort between JSC and ARC for autonomous TCS
operations, and will use the Thermal Test Bed at JSC and associated capabilities at ARC. The major
reason that the thermal system was chosen for this first demonstration was its slow dynamics.
Controlling expert system software could be simpler than would be needed for a system with faster

dynamics such as electrical power. According to the SATP Plan (ARC, 1987a), the significance of this
demonstration stems from its being the first NASA knowledge-based system to control a large complex
system in real-time and with real operational software. The demonstrated software will provide advice
on diagnosis and correction of faults, failure prevention through trends analysis, and explanation
capabilities. Causal modeling, intelligent reasoning through causal models and heuristic rules, trend
analysis, and validation methodologies are the key technology thrusts of this demonstration. Advanced
automation software for this demonstration includes the TEXSYS developed jointly by JSC and ARC.

2.2.2.2 1990 Multi-System Demonstration

The multi-system demonstration will include the Thermal Test Bed at JSC, the EPS Test Bed at LeRC,
the SSM/PMAD Test Bed at MSFC, and associated capabilities at ARC. The 1990 activities will actu-
ally be a series of demonstrations, each building on the accomplishments of earlier demonstrations. The
capabilities demonstrated will be the autonomous control of both the thermal and power systems'
operations. Technologies to be demonstrated include fault detection, classification and isolation
methodologies, system restoration strategies, replanning under uncertainty, and operator training
methodologies. Expert system software will control the operations of the participating systems and will
demonstrate the tcchnologies listed above (Wong et al., 1988).
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Thefirstdemonstrationwill involvetheelectricalpowersystem.TheLeRCEPSTestBedwill serveas
thepowergeneratorof theEPS;thesystemwill becontrolledbythePMACSexpertsystem.In the
seconddemonstration,theMSFCSSM/PMADtestbedwill actasasmart load on the LeRC power
source, simulating the power distribution requirements of a Space Station Freedom module, such as a
habitation module. In addition to the load of the MSFC Test Bed, LeRC will have the power loads of
attached payloads. Expert system software at LeRC (PMACS) and MSFC will control the operations of
these power systems.

The final demonstration will bring together the Thermal Test Bed at JSC, the two power test beds at
LeRC and MSFC, and capabilities at ARC as shown in Figure 2-21. ARC is responsible for directing
project management expert system development. All participating systems will be connected via net-
work links.
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PMAcs] SSM,PMAt, .I TEXSYSARC/LeRC ARC/MSFC | ARC/JSC

IBrassboard _ IBrassboard I [
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Figure 2-21. 1990 SADP Demonstration: Cooperating Systems
(Source: Wong et al., 1988)

The cooperative interaction of these systems will be through an intelligent executive controller called the
Autonomous Real-time Control of Hierarchical Agents and Networks at the Global Executive Level
(ARCHANGEL). ARCHANGEL will be developed at ARC and hosted on the DMS Test Bed at JSC.
It will be the functional equivalent of the OMS and has the potential to influence the OMS architecture.

2.2.2.3 1993 Hierarchical System Demonstration

This demonstration will evaluate and validate methodologies for expert systems control of more than
two Space Station Freedom subsystems through hierarchical architectural strategies.

2.2.2.4 1996 Distributed System Demonstration

The purpose of the 1996 demonstration is to evaluate and validate methodologies for expert systems
control of multiple Space Station Freedom subsystems through distributed architectural strategies.
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2.2.2.5 Issues

The most important issue raised in our interviews was cooperative problem solving. If these test bed
integration efforts are to be technically successful, effective and open communication and coordination
are essential. This is a technical issue relative to technology transfer, cooperative problem solving, and
coordination for commonality, but it is equally a management issue with respect to the establishment of
effective means of communication and cooperation.

ARC is expecting the delivery of a miniature version of the LeRC EPS breadboard, similar to the one
they received from JSC of the thermal system. LeRC's plans are somewhat different; they would like
to provide high-fidelity models. The power system breadboard components are expensive. LeRC per-
sonnel believe that models are natural product of Space Station Freedom design efforts and are sufficient
for systems design development, useful for verification, and provide an acceptable risk until test beds
get closer to real space hardware.

2.2.3 Space Station Control Center Test Bed

The Space Station Control Center (SSCC), an SSFP ground facility at JSC, will be responsible for tac-
tical and execution level planning and integration of manned base and user systems operations, moni-
toring, control, and configuration management of the Space Station Freedom core systems, storage and
retrieval of core systems data, the overall integrity of the manned base, and the safety of the flight crew
(JSC, 1988d).

The Systems Development Division (SDD) within the Mission Support Directorate (MSD) and the Mis-
sion Operations Directorate (MOD) at JSC are jointly responsible for the definition, development, and
implementation of the SSCC. MSD is building a SSCC Test Bed to provide an environment into which
projcct specific prototypes and breadboards, and COTS products, can be introduced for evaluation. In
August, 1988, an SSCC Test Bed Planning Requirements Document was distributed for review and
comments. Because the existing SSCC Test Bed is very limited in its capability to support all the
prototyping and evaluation activity that is required by the various disciplines within SDD, additional
requirements wcre solicited relative to test bed enhancements (JSC, 1988e).

The JSC SSCC Test Bed has connectivity to the overall SSIS ETC test beds and has gateways to
cxtemal networks such as the Goddard Telescience Test Bed. Many SSCC critical design issues can be
evaluated in a stand-alone environment; however, the structure of the integrated ETC environment will
be utilized to support testing of several levels of SSCC critical design issues and concepts within the
following areas (JSC, 1988e):

• Common human-computer interfaces

• Network communications

• SSCC network management

• OMA/OMGA partitioning

• Transaction management

• Process-to-process communications

• Ground data distribution services

• Commonality of display generation and distribution

• Data base management services and architectures
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• Security and privacy

Physical Test Bed. The hardware elements of the SSCC Test Bed, as well as physical connec-
tions to existing JSC test beds, are shown in Figure 2-22. The physical test bed currently includes the
following computing hardware:

• Four Sun Microsystems workstations

• DEC MicmVAX II computer (gateway)

• DEC VAX 11/785 computer

• Apollo DSP-80 computer (NIU)

• Bridge Communications GS/3 commercial gateway server
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Figure 2-22. SSCC Test Bed Architecture

(Source: JSC, 1988 e)

The Apollo DSP-80 serves as a NIU to the Apollo token ring network. The SSCC Test Bed network
contains two Ethemet LANs providing connectivity m all of the SSCC computers. The primary SSCC
Test Bcd Ethemet LAN connects the SSCC Test Bed with the SDD Workstation Prototype Lab (WPL).
Two SSCC network gateways provide connections to the Program Support Communications Network
(PSCN) and to the DMS Test Bed network. The secondary SSCC LAN provides connections only for

the four Sun workstations within the SSCC Test Bed (JSC, 1988e).
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The existing SSCC Test Bed is expected to evolve in functionality to that of the operational SSCC. Up-
grade plans include the replacement of the Ethemet LAN with an FDDI LAN to be compatible with the
planned upgrades of the DMS Test Bed.

Logical Environment. The SSCC Test Bed and its Ethemet network backbone provide the
logical functions of the operational SSCC. The GSFC and the Stanford test beds serve as remote site
science and telecommunications stations. Logically, the DMS Apollo Domain Network represents the
SSFP onboard DMS network and the DMS Test Bed provides the logical functions of the onboard
DMS. The C&T Test Bed logically provides the control and monitoring capabilities of the onboard

C&T. The Payload Simulator (PLS) Test Bed serves as the payload data source (JSC, 1988e).

Software. The SSCC Test Bed provides a gateway program (NOSGATE) that translates between
NOS and TCP/IP protocols. The test bed software also includes a COTS desktop publishing package
by Interleaf Corporation, a NASA-built display builder and editor package (Prototype Display Builder),
and environments for software development supporting the C, FORTRAN, Pascal, and Verdix Ada
languages. The X-Windows window manager is also supported on the Sun workstations (JSC,
1988e).

Advanced Automation. An OMGA prototype is being implemented on a Sun workstation. The
OMGA will duplicate some of the OMA functions, allow control of the Space Station Freedom from the
ground, and provide additional services such as generation of the Short Term Plan. The OMGA proto-
type consists of display and control prototype software for ground operations of the Space Station Free-
dom (Ulmer, 1988).

Existing Capabilities. Initial SSCC Test Bed efforts were focused on connectivity and interop-
erability to achieve a distributed test bed environment. This connectivity included the SSCC Test Bed,
the DMS Test Bed, the C&T Test Bed and the PLS Test Bed. Data links to GSFC, WPL, and to
Stanford University were also established. Successful prototypes were developed within these test beds
that bridge communications between dissimilar protocols to establish communication transparency
(JSC, 1988e).

Planned Capabilities.
lowing (JSC, 1988 e)

Additional planned physical and functional capabilities include the fol-

• Connectivity to the Software Support Environment (SSE) for access to development tools and
environments

• Network communication upgrades for compatibility with the DMS network and added func-
tionality

• Installation of an Radio Frequency (RF) link emulator

• Functional capability to collect and distribute telemetry data structures within the SSCC network

• Data base machine and relational data base management system

• Ada mntime executive for integrated process communication between applications
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2.3 OTHER SIGNIFICANT RESEARCH ACTIVITIES

2.3.1 INCO Expert System Project

One part of the Systems Autonomy Technology Program consists of specific domain demonstrations. A
set of these demonstrations has been planned to facilitate technology transfer to domains other than the
Space Station Freedom. One of these demonstrations is the INCO Expert System Support Project
(IESP). This demonstration is significant in that it will be the first NASA knowledge-based system to

be implemented into a real-time operational environment (ARC, 1987a). IESP is managed by the MOD
at JSC and is being developed by an MOD contractor team (including The MITRE Corporation).

MOD has as one of its responsibilities the operation of the Mission Control Center (MCC) at JSC in
support of Space Shuttle ground operations. MOD will have a similar role in the operations of the
SSCC and the Orbital Maneuvering Vehicle (OMV) Control Center. MOD is investigating and evaluat-
ing methods of attaining increased automation in support of flight controllers.

The objective of IESP is to provide assistance to the INCOs in the management (i.e., control and
monitoring) of two-way communication between the ground and the Space Shuttle in orbit, as well as
between the Space Shuttle and its payloads. An INCO fills a front-room position within the MCC. On
a normal Space Shuttle mission there are usually one or two INCO's in the front room and 2 or 3 in the
back room of the MCC. The INCOs' job is to monitor console displays which present real-time
information about the communication links (voice, video, digital data) between the ground and the
shuttle, and to send commands to communication devices to keep the links working properly. These
communication links comprise three different data paths: S-band (no video), KU-band (high frequency,
high data-rate), and UHF (voice only).

Currently, the displays used are simple monochrome CRTs with cluttered character output. The values
listed on the screen are related to the status of various communication links and devices. One goal of
this project was to replace this cluttered, character-only display with a more easily interpreted, interac-
tive, point-and-click type of display which would present more useful, easier-to-identify information to
the INCO using color and graphics, to allow the INCO to more easily control the communications de-
vices. A second goal was to provide expert analysis, interpretation, and explanation functions to assist
the INCO in assessing communication link malfunctions and configuration problems.

The INCO expert system attempts to emulate the responses of INCOs to communication stream mal-
functions and configuration problems. It works within a fairly realistic temporal constraint of 15 sec-
onds for common solution formulation, a reasonable time period for a human INCO with 6 months to 1
year of training on a particular payload. The expert system has been installed within the MCC and re-
sides next to the INCOs' workstations. It will be evaluated by the INCOs, a test of its performance and
acceptance, during the flight of STS-26, of the Space Shuttle.

The INCO expert system is a working prototype; however, it will be continually modified and extended.
It is written in CLIPS, an expert system shell developed by the Mission Planning and Analysis Division
of the Mission Support Directorate at JSC. Parts of the system were developed using the high-level
language C. IESP was developed on a Motorolla 68020-based Masscomp computer with 12 megabytes
of RAM, running the UNIX operating system.

Current and planned activities include the development of a Telemetry Data Base Verification expert
system and upgrades to existing equipment, including display equipment within the MCC and comput-
ing equipmcnt used to develop and run the IESP software.

The INCO expert system runs in real time in the sense that it analyzes real-time data and formulates
answers in real time. The Telemetry Data Base Verification expert system will be used prior to NSTS
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missions to verify the Shuttle telemetry formats which will be used on an upcoming mission. Up to 20
different data formats, from hundreds of possible combinations, are used during various phases of a
Shuttle mission; these formats are defined and stored on a Shuttle data tape. This tape is converted to a
data base for use by IESP. It is important that these formats be verified in the sense that IESP must
conform to these formats and mission phase-related format changes. This expert system project is also
being developed using CLIPS and C on a Masscomp computer.

Equipment upgrades include the replacement of MCC displays with color monitors which support the
output of the IESP applications and a larger telemetry system which will increase the number of teleme-
try parameters which can be captured from 4000 to 15000 parameters. These upgrades, along with
Ethemet networking, will allow multiple, distributed nodes and larger numbers of both users and
telemetry parameters which can be selectively distributed to those users. At least one more Masscomp
computer will be purchased to support these upgrades.

The data gathering capability of the IESP will be used also by ground controllers responsible for the
Shuttle main engines. IESP telemetry software, along with engine monitoring and control software,
will help these controllers monitor main engine problems when they arise and make decisions concern-
ing corrective actions such as shutting off a main engine, if necessary.

2.3.2 Transition Flight Control Room

The Transition Flight Control Room (TFCR) at JSC is located adjacent to the MCC and is an
engineering test bed for control room hardware and software systems in a near operational environment.
A major function of the TFCR is support for MCC Upgrade (MCCU), the augmentation and
replacement of major MCC hardware and software. Although the TFCR is closely related to the MCC,
it is not solely an MCC facility. The TFCR serves as a generalized control center test bed environment.
It provides a demonstration facility for design approaches, allows the validation of user operational
requirements, and the transition of new technologies into flight control rooms. The TFCR allows flight
controllers to evaluate proposed upgrades under near operational conditions (e.g., using real telemetry
data). Real-time telemetry is available to workstations in the TFCR through a 100 MBS backbone LAN;
a general purpose LAN connects the workstations in the TFCR.

Equipment being tested in the TFCR includes intelligent workstations, color graphics displays, physical
input devices (e.g., touch screens, button panels), and front screen projectors for display of workstation
generated data, graphics, and video. Software includes windowing environments (e.g., the Windowing
Executive -- WEX), a Data Display Executive that provides connectivity between data sources and data
displays), several display builders/managers, and an Interim Data Manager that provides acquisition of
real-time data by application software.

An Integrated Workstation Prototype project will package MCCU-specific and commercial technologies
in an integrated environment. These activities include a Projection Plotting Display (PPD) Application
(including a wide screen display for world map, ascent/entry, and artwork), TV window overlay on
PPD output, an ADS (on-line flight manuals and procedures stored on laser disks, user report and
documentation development, optical character reading, and monochrome graphics scanner), PC
emulation (PC-DOS), color image scanner and display, and color printer with screen capture.

The TFCR is actively used during Space Shuttle missions. Because of the periodic nature of the NSTS,
the TFCR could be applied to SSFP activities between Shuttle missions. A TFCR interface to SSFP
data is being defined.
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SECTION 3

OPERATIONAL AND SUPPORT CAPABILITIES

The following sections discuss the operational and support capabilities of the Space Station Freedom
Program (SSFP) with respect to formal software development, test, and integration. In Section 3.1 the
Software Support Environment, the designated environment for Space Station Freedom software
development, is discussed. Although the reader is expected to have some background on the role and
purpose of the SSE, Section 3.1.1 provides a brief overview of the SSE and its elements. Each of these
elements is then discussed in more detail. Section 3.2 introduces the Multi-System Integration Facility

3.1 SOFTWARE SUPPORT ENVIRONMENT

Space Station Freedom software will be developed by a cast of thousands, spread across multiple
NASA centers, contractor facilities, and intemational partners' facilities. To provide as much uni-
formity and consistency as possible for the software development at NASA and contractor facilities, an
overall framework called the Software Support Environment (SSE) has been defined. Applications de-
veloped by international parmers will be developed outside of an SSE-supported environment.

The SSE is not a single computer facility or even a set of homogeneous facilities. As the name sug-
gests, it is an environment and a set of policies, procedures, and tools that can be installed on the tangi-
ble Software Production Facilities distributed throughout the SSFP community. The objectives of the
SSE are to provide a single logical environment (with multiple physical instantiations) with the follow-
ing capabilities:

• Support for all Space Station Freedom operational software

• Full functionality to support software from conception to retirement

• Economical maintenance

• Technological currency during its lifetime

The SSE physical entities consist of a single Software Support Environment Development Facility
(SSEDF), locatcd at JSC, at which the Space Station Freedom software development policy and tools
(rules and tools) are baselined, and multiple facilities (Software Production Facilities--SPFs) on which
these tools are installed for facilitating Space Station Freedom software production (see Figure 3-1).

The SSE contractor (Lockheed Missiles and Space Company of the Lockheed Electronics Corporation)
is responsible for implementing the SSE architecture that is shown in Figure 3-2. The conceptual
architecture shown in this figure depicts a Process Management Element that isolates the toolset from the
supporting host system. This element will be unique to each vendor-specific instantiation of the SSE;
thus one SPF could host SSE tools on an IBM mainframe, while another SPF could host the same
toolset on a DEC VAX. In addition to ensuring portability among platforms, the Process Management
element is intended to provide for eventual inclusion of methodologies and technologies such as struc-
tured design methodologies, object-oriented programming techniques, and artificial intelligence. The
Software Production and Integration, Test and Verification Elements are of primary concern in the evalu-
ation of the SSE for advanced automation software development.
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3.1.1 Software Support Environment Development Facility

3.1.1.1 General Description.

The SSEDF develops the rules and tools that are exported to the SPFs. In order to avoid extensive new
development, the SSEDF is expected to rely mostly on Commercial-off-the-shelf (COTS) software
(Computer-Aided Software Engineering tools, project management tools, software development tools,
etc.) to satisfy the toolset requirements. Custom-built software necessary to satisfy unique processing
or control requirements will be written in the Ada programming language. The SSEDF toolset will
support the various SPFs in all phases of the software life cycle; use of the SSEDF tools will require
that individual SPFs consist of hardware and operating system software that can host the tool set.

In addition to providing a toolset, the SSEDF will be a single repository of common models of Space
Station Freedom systems (perhaps initially in the form of functional simulations) which will be devel-
oped at individual work package SPFs and then sent to the SSEDF for configuration management.
These models will be used for early test and verification purposes, and will be contained in the Models
and Simulation Element (see Figure 3-2).

3.1.1.2 Advanced Automation Capabilities.

The baseline requirements for SSE advanced automation tools are contained in (LMSC, 1988b; LMSC,

1988a). These documents set forth functional (and in some cases detailed) requirements for the various
SSE elements; the expert system tool requirements are set forth in the sections describing the Software
Production Element. Briefly, they require that the SSE provide the following capabilities:

• Develop and deliver expert system applications
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• Provideincrementalcompilationof rules
• Provideexpertsystemgenerationcapabilities
• ProvideinterfacesbetweentheexpertsystemsandotherSSEapplications
• Providefor thegenerationof expertsystemsthatrunusingSSFPflight softwareor Space

StationInformationSystem(SSIS)productiongroundelements

Theserequirements,astheycurrentlystand,couldpossiblybesatisfiedby oneor moreCOTS
knowledge-basedshells.Severaloff-the-shelftoolsshouldbeavailablebythetimetheSSEDFreaches
itsfirstmajorOperationalIncrementmilestone(tentativelyDecember1989).Thismilestonewill pro-
videthefirstmajortoolsetload to the SPFs, including an expert system tool. If satisfaction of the
COTS requirement is not possible, and the requirements mandate a development effort, one would
imagine such tools would have to be Ada-based (based on stated SSE policy). The need for such Ada-
bascd development becomes increasingly unlikely as time passes and more knowledge-based shells for
standard computers are marketed.

3.1.2 Software Production Facilities

3.1.2.1 General Description

Space Station Freedom development is relegated to the various NASA Centers by way of Work Pack-
ages (WP) (i.e., WPl is managed by Marshall Space Flight Center -- MSFC, WP2 by Johnson Space
Center -- JSC, WP3 by Goddard Space Flight Center -- GSFC, and WP4 by Lewis Research Center --
LeRC). The embedded software for the Space Station Freedom systems and elements that the WPs are
responsible for will be produced on the various WP SPFs. The support software configuration of these
SPFs and the rules and tools under which application software is produced will be provided by the
SSEDF. The SPFs, while physically separate from the SSEDF, will provide a common host envi-
ronment for the SSE tools across the SSFP for software development, test, and maintenance. The SPFs
will utilize a variety of computer equipment in discharging their flight software development responsi-
bilities. The current baseline equipment includes mainframes (IBM-compatible hosts, DEC VAXs, and
possibly other hosts using the UNIX operating system) and workstations (Macintosh IIs, IBM PC
compatibles, and Apollos). Individual SPFs will develop software specific to their work package
responsibility, using models (functional simulations) of other work package systems as needed for in-
tegrated testing. For example, LeRC will perform integrated testing of power system software using
software services and flight-like hardware provided by the JSC Data Management System (DMS).

To perform this integration and testing role, the SPFs will be enhanced with DMS Kits; this enhance-
ment will allow the SPF to play the role of a System Integration Facility (SIF) for comprehensive intra-
work package test and verification purposes. Briefly stated, "a DMS kit will contain the hardware and
DMS support software contained and utilized by the distributed system (or elements, i.e., the flight ar-
ticle), as well as the hardware and software needed for the DMS support environment" (JSC, 1987).

3.1.2.2 Advanced Automation Capabilities

The design philosophy of the SSE is that the SSEDF toolset should migrate to new computer architec-
tures as they enter the mainstream. Thus, while the early SPFs will be IBM-compatible or DEC VAX
hosts, the goal is to accommodate new host architectures as they become proven. Probably, the first
such SPF re-host will be to a UNIX host. Further down the road, one can imagine SPFs with parallel
architectures (e.g., the Sequent computer line) hosting the SSEDF toolset.

Similar projections can be made for the SPF workstations. While the SSE workstation platforms
(Macintosh II, Apollo, IBM PC) as currently configured are not suitable for stand-alone advanced au-
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tomationdevelopment,theycouldeasilybereconfiguredtochangethatsituationby includinghardware
extensions(e.g.,Lisp boardsandmorememory)andsoftwaretoolsthatsatisfythe SSEDFexpert
systemrequirements.Thisreconfigurationwouldhaveto bedonein thecontextof preservingthe
baselined workstation configuration as an operable subset. The availability of plug-in AI development
cnvironments (e.g., TI Explorer board on the Macintosh II and the Gold Hill Hummingboard and Gold
Hill development system on the IBM PC) to be added to conventional workstations makes this possible.
Thus, a rather complete Artificial Intelligence (AI) development environment (almost equivalent to a
stand-alone Symbolics machine) could be configured on an existing SSE workstation.

As expert system development environments migrate to mainframes, similar extensions should be
available for the SPF hosts. Intellicorp already provides a version of KEE for the IBM mainframe and a
wide variety of expert system tools run on DEC VAXs.

3.1.3 Verification and Validation Capabilities

The following paragraphs briefly discuss the approach to SSFP verification and validation (V&V)
starting with a general description of the proposed SSFP V&V process, followed by a more focused
discussion of how SSFP testing will be accomplished, and concluding with the current testing
architecture and V&V requirements relative to advanced automation support.

3.1.3.1 Verification and Validation Process

SSFP elements, systems and software will be tested, integrated, and verified by means of a V&V
methodology that spans the SSFP, from the Level II Program Office to the contractors and suppliers.
In this hierarchical process, Level II is responsible for developing the top level SSFP V&V
requirements and plans, for verifying the integrated Space Station Freedom software, and for producing
the flight software load. Level III is responsible for developing derived V&V requirements, for
developing and implementing V&V plans, and for verifying distributed systems and elements. Finally,
the contractor or supplier is responsible for the performance of all Orbital Replaceable Unit (ORU) and
subsystem hardware and software V&V. The policy governing V&V is covered in (SSP, 1988 e; SSP,

The V&V process encompasses three phases. The first phase, development, ensures that the proposed
hardware and software design concepts are acceptable for use in the intended application, and that
technical, cost, and schedule risks which may be encountered during V&V are minimized. The
certification phase of the V&V process is meant to ensure that the hardware and software complies with
all design and operational requirements, including all design and safety margins. Finally, the acceptance
phase determines that the hardware and software is built to its specifications.

The three phases of V&V are applicable to each of the test levels (ORU through onboard V&V) shown
in Figure 3-3, but the V&V methods, equipment, and location may change. To illustrate differences in
V&V methods, development phase V&V at the system level may use a system test bed; this would be an
inappropriate method for multi-system integration. To illustrate differences in V&V equipment, the
need for, or nature of, a DMS kit would depend on the level of testing.

3.1.3.2 Testing Approach

Several V&V methods are acceptable for Space Station Freedom use, governed by criticality (personnel
and SSFP element critical, mission critical, and all others). These are demonstration, inspection,
analysis, and test (or combinations of these four). A V&V process flow relative to
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each of these is set forth in (MDC, 1988b). Independent verification and validation (IV&V) activities
(in addition to V&V activities) are specified for the highest criticality software products. V&V activities
in the SSFP include:

• Analysis of requirements

• Analysis of code (through inspection or automated analysis aides such as static and dynamic
analysis tools)

• Evaluation of documentation, system performance, and hardware and software compatibility

• Provision of procedures and plans for V&V tests

• Execution of those tests

The SSE provides tools for accomplishing the above activities as part of its Integration, Test and Veri-
fication Element (LMSC, 1988a). These tools will be made available as part of the uniform delivery of
toolset capabilities from the SSEDF to the SPFs. These tools include the following capabilities:

• Pre-test setup tools

• Models of systems

• Execution tools

• Post-test analysis tools

• Test library setup functions

• Integration capabilities

Each SSFP WP participant is responsible for establishing a Verification Data Base (VDB) in a common
SSFP Office Verification Office format to provide program management visibility into the overall SSFP
verification effort.

3.1.3.3 Testing Architecture

Because of the distributed nature of the SSFP, a test and integration architecture presented a special
problem area. JSC recognized these problems during the Phase B time frame, and suggested a novel
approach for software development, testing and integration called Test And Verification of Remote
Networked Systems (TAVERNS). At the heart of TAVERNS is a framework that provides the various
SPFs (each concerned with its own systems) with flight host hardware and with portable models of the
rest of the Space Station Freedom systems. This environment consists of three parts as shown in
Figure 3-4: a Test Control and Simulation Environment (TCAS), the System Under Test (SUT), and
the DMS Environment (JSC, 1987).

The TCAS environment is provided by the SSE Independent Test & Verification (IT&V) Element. The
SUT environment and the DMS environment are coupled by the use of DMS kits. Relative to the SUT,
the DMS kit provides hardware and software services to the system being implemented; the same
hardware and software services that this system will be hosted on and require while on orbit (actually,
the hardware will not be flight qualified, but will otherwise be equivalent). Relative to the DMS
environment, DMS kits provide an interface to the SSE models (see Figure 3-5).

DMS kits will be distributed to all Space Station Freedom Software developers and will provide, along
with common simulation models, a test environment in which DMS services and missing systems can be
included in the test process at the Work Package Software Production Facility/Software Integration
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Facility (SPF/SIF). The intent of DMS Kits and a common simulation environment is to provide an
early ground development and test environment which duplicates (as nearly as possible) the Space
Station Freedom onboard environment. The way this is accomplished in a Work Package SPF is that
the SSE provides software models of systems and a Simulation Interface Buffer (SIB). The DMS Kit
intcrfaces the system under development (e.g., a Thermal Control System) to the SPF for work package
development and intra-work package ITV. Inter-work package ITV is accomplished at the MSIF.

DMS Kits will be provided in six types, with Type 1 consisting only of an SDP on which to run the
software of the system under development/test (all DMS services are provided on the WP SPF). Start-
ing with DMS Kit Type 3, the DMS Kit itself will provide DMS Services. To a degree (although not
one-for-one), there is a DMS Kit for each of the test levels shown in Figure 3-3 (i.e., ORU, assembly,

subsystem, system, multi-system integration, onboard test, etc.). Thus, DMS Kit Type 4 is the MSIF
kit, and DMS Kit Type 5 is the IntegraUon, Assembly, and Check-Out kit. Breaking this analogy, DMS
Kit Type 6 is a special Payload Interface Verification and Testing kit.
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3.1.3.4 Advanced Automation Capabilities

Requirements for advanced automation IT&V are preliminary at this point. LMSC (1988 b) requires that

"the IT&V Element shall support IT&V of knowledge bases for artificial intelligence and expert system

applications".
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3.2 MULTI-SYSTEM INTEGRATION FACILITY

3.2.1 General Description

The Multi-System Integration Facility (MSIF) will be the final point for integration and test of Space
Station Freedom flight software before it is certified for flight readiness. It will demonstrate that "the

computational hardware/software portions of the various Space Station Freedom systems, which have

been produced by different contractors at geographically distributed sites, interact correctly as defined by

their designs, and meet the overall requirements of the program" (JSC, 1988c). The MSIF will provide

a high-fidelity ground-based replica of the onboard systems, using real hardware (at least up to the sen-

sor/effector boundary) and software, or high-fidelity models, as required by the test team. The MSIF

will be a physical facility, located at JSC, utilizing the rules and tools of the SSE. Its architecture is still
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in the early design phases, but one can assume that it will consist of host computers and workstations
like those in the SSEDF and the SPFs, along with flight-like hardware (not necessarily flight qualified)
on which to host the systems under test. A special DMS Kit (Type 4) will be used to host the system

under test and couple it to the DMS environment (MDC, 1988a). The host computers will be able to run
simulations both in interactive and in batch modes, in near-real time fashion. Large data bases of test
cases and test results will be maintained under configuration control, with tools to manage and analyze

pre-, during-, and post-test results.

The goal of the MSIF is to test and certify hardware and software systems that have coupling (through
the DMS) with other systems. Space Station Freedom systems entering the MSIF will already have un-
dergone thorough testing, including testing with models of other systems. In fact, the first doorway test
of a system entering the MSIF will duplicate some of these tests. In the MSIF, the incoming system
will be tested for the first time in conjunction with real interfacing systems (JSC, 1988b). This testing
will encompass both performance testing (where the new system simply presents an accurate interface
load to the rest of the system) and functional testing (where the new system actually computes outputs
based on its inputs).

The MSIF represents the last step in formal testing and certification of a system which is attempting to
achieve flight certification. Thus the MSIF will have stringent configuration management controls, in-
cluding a data base of all versions of all software (and test scripts). For systems coming to the MSIF
from one of the SPFs, this strong configuration management can be viewed simply as an extension of
the configuration management tools employed at the SPFs/SIFs (since the MSIF will use the SSE
tools). However, for a system coming for final test and integration from an intemational parmer (i.e., a
system developed in an environment not conforming to the SSE), the MSIF may represent the first time
that the system has been subject to SSE-style configuration control.

As suggested by the above paragraph, the MSIF can be viewed as adhering to the physical configuration
and rules and tools of the SSE, with the addition of real Space Station Freedom system hardware and
software (instead of, or in addition to, the baselined SSEDF system models). The MSIF is the single
facility within the SSE where the integration phase of the life cycle process model must be ac-
complished. It should be recognized that the MSIF is not necessarily a f'mal step in the life cycle; soft-
ware that does not meet certification cycles back to SPFs and to earlier process phases of the life cycle.
Such modified software will eventually need to return to the MSIF from the SPF that modified it.

3.2.2 Advanced Automation Capabilities

No special facilities or methods for integrating advanced automation software are as yet baselined. Re-
quirements for testing advanced automation software are set forth in (LMSC, 1988b).
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SECTION 4

EVOLUTION PATHS FOR ADVANCED AUTOMATION

Sections 2 and 3 highlighted the existing state of the Space Station Freedom Program (SSFP) design,
research, operational, and support capabilities as they pertain to Space Station Freedom software
development, testing, and integration. Many of the necessary pieces are already in place to
accommodate the goal of a flexible environment in which new development technology can be plugged-
in to support the necessary software applications needed for a 30-year Space Station Freedom Program.
However, a strategy for the evolution of these diverse capabilities, especially with respect to advanced
automation technologies and applications, is needed. This section proposes such a strategy. The
following discussions of evolution paths for advanced automation address the evolution of advanced
automation technologies, the facilities which use these technologies to build software, and the
applications based upon these technologies.

4.1 TECHNOLOGY EVOLUTION

This section introduces the evolution paths of advanced automation technologies within the Space Sta-
tion Freedom Program, as shown in Figure 4-1. While the evolutionary end point in this diagram is the
use of these technologies within onboard flight systems, the concepts can be applied to ground-based
systems. It is emphasized that this section addresses technologies, not facilities or applications.

As can be seen in the figure, technologies evolve over time. As they move from level to level, they
progressively mature from the domain of research (state-of-the-art) toward practical application (state-of-
the-practice). As technologies mature, they move from technology development environments to
environments where application development takes place. Products of one evolutionary level become
the building blocks at the next level. For example, early technological development takes place through
basic research. As research issues mature they can be used to create tools. Tools may evolve to the
point where they are used to develop prototypes; prototypes to build applications; applications to build
systems; systems to build Space Station Freedom.

Technologies can follow three evolutionary paths: gradual evolution, an evolutionary jump to a higher
level environment, or extinction. A technology may acquire some advantage, reach a level of maturity
through gradual evolution, or fill some void, allowing it to make an evolutionary jump, a leap to a
higher-level environment. Of course, the technology must now compete within the new environment,
with the same three paths available within this environment. A technology may become extinct, due to
either some environmental change, some cataclysmic event, or a failure to compete with other members
within the environment. Extinction within one environment does not mean extinction in the underlying
environments.

To make a leap from one level to another, certain environmental doorway tests must be passed. For in-
stance, basic research must be proven through experimentation before tool development, based upon the
research, can be successful. Tools must be available and useful to prototype developers. They must
perform some necessary function, either in a manner which betters the competition or fills a void. Pro-
totypes must prove some concept, demonstrate some function, through instantiation. Applications must
overcome scale-up problems usually associated with the transition from proof-of-concept prototypes to
real-world applications. Performance requirements must be met; validation and verification (V&V)
methodologies specific to the underlying technology must be available or created.
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Making the leap from one environment to the next does not ensure survival within the new environment.
Each environmental level possesses new and different environmental factors which will act upon the
echnology. These new criteria will need to be satisfied if the technology is to evolve beyond a certain
level. Various technologies will scale the path at different rates and at different times. Not all tech-
nologies will evolve to completely traverse the path.

Some examples might help to make these concepts clear. Neural network research flourished in the
early 1960s; a large amount of govemment research money was awarded and it looked like a promising
field. Neural network technology was mainly at the level of basic research, but tool development had
begun when Marvin Minsky and Seymour Papert published their book Perceptrons (Minsky and Papert,
1969). In this book, they showed that neural networks had theoretical limits, at least the extant models
of the time, which would restrict their use severely. Many people attribute the early demise of neural
network research to the publication of this book; Minsky argues that other factors had precipitated the
death of neural networks several years earlier. Nevertheless, the classical period of neural network re-
search ended, and the dark ages began in which "research on neural networks was unloved, unwanted,
and, most important, unfunded" (Anderson and Rosenfeld, 1988).

During these dark ages, neural network technology was virtually extinct in all but a small number of ba-
sic research laboratories. That is, until the renaissance of the 1980s when, as a result of many evolu-
tionary jumps from new research, results to tool development to effective prototypes, real-world
applications began to be developed. Neural network technologies are now available in tools from at
least twenty companies; these tools are available on standard platforms, and there is some talk of devel-
oping standards. Neural network technologies are on their way to becoming conventional, at least at the
tool level. At the same time, however, certain neural network applications will evolve slowly due to
performance issues associated with serial hardware platforms. Massively parallel hardware will allow
neural network technology to take a massive evolutionary leap.

Several expert system technologies have evolved to a higher level of maturity and conventionality.
Some of these technologies are now widely accepted within the business and engineering worlds.
These technologies are are state-of-the-practice; others are still research issues. Contrast two types of
expert system applications: diagnostic systems and planning systems. Edward Fiegenbaum, in his
Presidential Address at the 1988 American Association of Artificial Intelligence (AAAI) Conference,
suggested that diagnostic applications are the most numerous expert system applications. This is be-
cause the technologies required to build diagnostic systems have evolved to the point where there are
many tools available on a variety of hardware platforms which have allowed the development of useful
diagnostic applications. The technologies required to develop planning systems, however, have not
evolved to the same level of maturity or readiness.

Diagnostic expert systems are approaching the upper right-hand comer of figure 4-1 while planning
systems still reside in the lower left on this diagram. Put another way, diagnostic systems have matured
to be state-of-the-practice, while planning systems are still state-of-the-art. Diagnostic systems have
made the leap from technology development facilities to application development facilities; planning
systems, and other immature technologies, have not, yet.

The major low-level evolutionary drivers of expert system technologies are languages (e.g., LISP, Pro-
log), knowledge representations (e.g., rules and frames), and inference mechanisms (e.g., forward and
backward chaining). Rule-based knowledge representation schemes and inference mechanisms are ma-
ture and useful for diagnostic systems. It is possible that planning systems will require other technolo-
gies which are still relatively immature.

Higher-level drivcrs of rule-based technologies, tools, are widely available from many different
vcndors. Users have embraced rule-based diagnostic applications and developers (i.e., the Data
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Processing (DP) shops) are becoming comfortable with rule-based expert system development. Many
successful diagnostic prototypes and applications have been developed and reported in the literature.

Specialized platforms for the development of rule-based prototypes and applications (i.e., dedicated
LISP machines), at one time quite a mature technology, are rapidly being replaced by conventional
hardware platforms (e.g., personal computers and minicomputers). These specialized machines are
rarely seen above the prototype level on the evolutionary path. Some of the companies which created
and sold these machines are extinct. The specialized machines failed to compete with the extant and
emerging more conventional hardware in terms of cost, performance, and integration. It is unlikely that
these machines will be used as a delivery platform for applications, especially within the SSFP.
However, as Peter Friedland et al. (1988) pointed out in their report to Space Station Freedom Level I,
the development environment does not necessarily have to be identical to the delivery environment.
Specialized development platforms are useful for rapid prototyping and experimentation, and the job of
porting applications from this environment to a more conventional delivery environment need not be
cumbersome.

A major high-level evolutionary determinant is the testing required before a technology will be consid-
ered safe, reliable, and ready for use in space. Considerable work has gone into the development of
V&V methods for rule-based expert systems, although a great deal of work is still needed in this area.
V&V methods will be required for all emerging technologies, at least with respect to the qualities that
make these technologies unique and require different forms of testing.

4.2 FACILITY EVOLUTION STRATEGIES

The preceding section discussed each level of the technology evolutionary path from research to flight
systems, along with the facilities and products associated with each level. This section proposes a strat-
egy for promoting the use of advanced automation within the SSFP.

Early thinking on the subject of the promotion of advanced automation within the SSFP suggested the
need for one or more physical Advanced Automation Test Beds. These Advanced Automation Test
Beds were considered necessary to fill the gap which exists between the technology developers and the
application builders. The authors now reject this concept. Not only are Advanced Automation Test
Beds unnecessary; they could be detrimental. Creation of one or more Advanced Automation Test Bed
would hamper the evolution of the Software Support Environment (SSE) and would duplicate, or
compete unnecessarily with, the existing laboratories and test beds. Advanced automation technologies
will need to interface with or be integrated with conventional technologies, which will be developed in
the existing facilities.

A more appropriate direction, then, would be an examination of existing facilities. These facilities, the
laboratories, test beds, SSE, and Multi-System Integration Facility (MSIF), will evolve over time.
They will need to evolve in parallel with the evolution of the Space Station Freedom. They must evolve
to incorporate new technologies as they are born and mature. They must evolve to provide greater levels
of autonomy to flight systems.

4.2.1 The Incorporation of New Technologies

The use of new technologies is usually resisted. Friedland et al. (1988) report that the only real
resistance they obscrved to the immediate use of Knowledge-Based Systems (KBSs) on Space Station
Freedom came from the "institutional" Management Information System (MIS) community at NASA.
This was not a surprising find, either to those authors or to us. Resistance from the DP shops is
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sometimesastumblingblockto theuseofthesenewtools;atothertimesthisresistancebuffersusers
fromuntested,immaturetechnologiesandunsafeoperations.

Researchersarealwayshangingover the cutting edge of technology, entrenched in the state-of-the-art.
The engineering world is based upon proven technology, but at the same time is always investigating
new technologies that survive the research laboratories. Users and operations groups want state-of-the-
art. These are the major drivers pushing new technologies toward application development, sometimes
too early.

Developers (i.e., the DP shops), on the other hand, are entrenched in the state-of-the-practice, especially
in a contractor-oriented software development effort where budgets may be constrained. If something
can be done the old way, why change? If money can be saved building the Space Station Freedom
without advanced automation, why include expert systems? Tunnel vision often restricts progress too
much, but it also occasionally averts danger.

The first use of ncw tools yields fragile systems; they do not perform well, they seem hard to use, they
require retraining, etc. However, as the tools are refined and as system developers become more profi-
cient in their use, the systems become increasingly more robust. Some tools never produce robust sys-
tems, and they eventually die along with their aberrant systems. The authors use the word aberrant de-
liberately; to be aberrant means to depart substantially from the standard. As a building block matures, a
tree test of its ability to survive is the eventual formation of a standard for the underlying technologies
and tools (perhaps a new standard, which legitimizes the tool and its resulting systems). Out of these
standard tools, reliable and cost-effective systems can be built.

4.2.2 The Need for Two Development Environments

The technology evolution path is divided into two distinct segments: state-of-the-art technology devel-
opment and state-of-the-practice application development, as shown in Figure 4-1. Therefore, two
separate advanced automation development environments must exist within the SSFP, but they must fit
within the established framework.

4.2.2.1 Laboratories and Test Beds: State-of-the-Art Technology Development

Evolution of Space Station Freedom is critically linked to the laboratories and test beds. New technolo-
gies will be nurtured within these facilities, and new tools will be developed which will allow these
technologies to be used in flight systems. However, new technologies should not be used until they
achieve a certain level of maturity.

The technology levels and associated facilities which are concerned with state-of-the-art technology de-
velopment are shown in the lower left-hand portion of Figure 4-1. Many of these facilities exist today,
preceding the SSE by several years, and are actively testing critical design, operations, and integration
concepts. Some of these facilities will gradually disappear; many others will continue to research and
test new concepts and designs throughout the life of the SSFP. In some cases, these facilities will pro-
duce useful applications based on technologies which are not yet considered fully mature or con-
ventional. This does not imply that these applications should not be used. If they solve a problem
which carmot be solved using more mature technologies, these applications should be utilized; however,
they will probably require a greater level of scrutiny.
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4.2.2.2 SSE: State-of-the-Practice Application Development

The long-term success of the SSFP is critically linked to the SSEfactory that will supply Space Station
Freedom software and to the infusion of new technology. If new technology does not continually drive

this factory, it will become obsolete and cost-ineffective.

The SSE facilities, shown in the upper right-hand portion of Figure 4-1, are responsible for application
and systems development. The SSE should be restricted to the use of state-of-the-practice, conventional
technologies. The SSE, regardless the level of its flexibility, is not a satisfactory environment for the
development and test of state-of-the-art advanced automation applications. State-of-the-art implies
technological immaturity, limited developmental and pragmatic experience base, and the lack of stan-
dards. These technologies should be left to the research laboratories and the test beds. With suitable
flexibility, the SSE can accommodate state-of-the-practice advanced automation applications. Of
course, in an evolving world, today's state-of-the-art is tomorrow's state-of-the-practice.

What is needed is a set of criteria and procedures to promote and control the evolution of the SSE, to re-
strict the use of immature technologies within the SSE, and to allow the SSE to include new tech-
nologies as they mature.

4.2.3 Implications for the Laboratories and Test Beds

As proposed above, only well-established tools can be placed in the SSE for use in developing safe and
reliable advanced automation applications. The places for emerging advanced automation tools and ap-
plications are the SSFP design test beds and laboratory facilities since new advanced automation tech-
nologies, tools, prototypes, and applications will emerge from these fadlities.

4.2.3.1 Research Laboratories

NASA efforts such as the Office of Aeronautics and Space Administration (OAST) System Autonomy
Technology Program (SADP) suggest the value of laboratories in bringing advanced automation to
market. Such programs (and others within the NASA center and Work Package structure) are the
Research & Develoment component of the SSFP organization. The SATP Plan (ARC, 1987 a) sets forth
five technology areas (task planning and reasoning, control execution, operator interface, sensing and
perception, and system architecture and integration) where NASA feels that R&D is required to bring
advanced automation and autonomous systems to fruition.

One of the goals of the laboratories is tool development. Investigations into new technologies will pro-
duce useful tools as these technologies mature. Migration of these tools from the laboratories to the test
beds and, subsequently, to the SSE will allow the development of prototypes and applications based on
mature technologies. Therefore, criteria and procedures must be def'med for determining the technology
readiness of the various tools developed before they can emerge from the laboratories and be used
within the test beds and the SSE.

4.2.3.2 Design Test Beds

Laboratories can be ad hoc, but test beds need more structure and organization. This is because test
beds are dealing with engineering and operations personnel, and because they are the step just before
application migration to the SSE. Test beds are essential to the engineering component of the SSFP or-
ganization. Prototyping activities are important for the testing of critical designs and operations con-
ccpts. These facilities will provide essential ground capabilities as Space Station Freedom evolves.
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Testbedsarealsoessentialtotheoperations organization. Training of and experimentation by opera-
tions personnel may take place within system test beds. In other words, flight controllers would not
know what to do with an Operations Management Ground Application (OMGA) (or would be afraid to
use it) if they had not already used an analogous capability on an engineering test bed.

One of the goals of laboratories is tool development and migration of these tools to the test beds and the
SSE. An analogous goal for test beds is prototype, and in some cases, application development, with
subsequent migration to the SSE for reimplementation or directly to the MSIF for integration (assuming
the application has been designed and developed for testability and maintainability). Just as there is a
hierarchy of tool readiness within the laboratories, there is a hierarchy of application readiness within
the test beds. Thus, it could be argued that diagnostic systems are ready to migrate out of test beds to
the SSE, but that scheduling and planning systems are not (tools for building them are still evolving in
the laboratories). A mechanism is required to allow prototypes and applications to be evaluated for
technology readiness; a doorway test to gain entrance either to the SSE as a viable, mature technology to
be supported by the SSE; or to the MSIF as an important application for the Space Station Freedom,
using a new, less mature technology.

The OAST has embarked upon several technology demonstrations to show the state of readiness of
some of the underlying core technologies as well as the interaction of advanced automation applications
on distributed systems. These demonstration and integration activities involve the integration and co-
ordination of several advanced automation laboratories and design test beds.

In a like manner, the End-to-End Test Capability (ETC) integration activities require the coordinated
efforts and integration of many test beds to test operations concepts and critical designs. These activities
represent an early level of demonstration, test, and validation that will not be available anytime soon in
the SSE world. The ETC can play an essential role in the current and ongoing station design and
development efforts. A similar Strategic Defense Initiative (SDI) activity exists within the National Test
Bed. The Defense Department's Strategic Defense Initiative and Air Force Electronics Systems Division
are developing this test bed which will be a high-fidelity, distributed simulation capability for testing and
developing software and systems architectures for SDI. They have created a 12-member advisory
group of scientists called the Simulation Engineering Panel. Dr. James Brown, professor of computer
science at the University of Texas at Austin, is the panel's chairman. He has an extensive background
in operating systems, performance evaluation, parallel processing, and supercomputing. Dr. Brown
believes that the technology underlying the SDI test bed could be a valuable tool to NASA (Gruman,
1988).

The interconnection, integration, and coordination of existing and planned SSFP test beds is critical to
the development of a safe, reliable, and effective Space Station Freedom Program. A mechanism must
exist, however, that facilitates two way communication between these facilities to allow cooperative
problem solving.

4.2.4 Implications for the SSE

Core technologies, tools, and applications can be grouped according to technology readiness and evalu-
ated for support by the SSE. The SSE should use tools and develop applications only if the underlying
technologies are mature and conventional. Certainly rule-based knowledge acquisition and representa-
tion, window-based human-computer dialog, and certain knowledge-based management architectures
have entered the mainstream of the computer industry. The underlying tools of these and other core
technologies should be included within the SSE. Tools for less mature technologies should remain in
the laboratories and test beds. Similarly, only those applications which use mature technologies should
bc considered for the Initial Operations Capability (IOC) of Space Station Freedom.
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A goalof theSSFP, then, should be the identification of these mature, enabling technologies and appli-
cations; and a plan should be developed for selecting, developing, and migrating appropriate tools and
techniques out of the laboratories to the SSE. This migration will not be painless; it will take education,
training, and persistence in the face of resistance. But, it is necessary, because the SSFP will require
these applications to meet its system autonomy objectives. The SSE will be responsible for moving
mature advanced automation applications (prototypes) from a demonstration environment to an opera-
tional environment. These applications must be re-developed within the SSE, and this requires tools
and training in the development environment.

The Software Support Environment Development Facility (SSEDF) is the element of the SSE that
provides the tools that the SPFs will use for software production. The SSEDF can be useful in
providing tools to bring advanced automation applications to flight readiness. A list of the suitable
advanced automation applications which it can support must be developed. Such applications, of
course, represent a moving target. Friedland et al. (1988) suggest a group of candidate applications for
Space Station Freedom IOC, and another group for beyond IOC. In the same paper, the authors
suggest SSEDF tools to bring the IOC applications to market. The suggestions include the development
of an official Ada expert system shell within the SSE, the acceptance and implementation of a life cycle
model (e.g., the Boehm spiral model) that is appropriate for advanced automation development, and the
adoption of methods for KBS V&V. In the following sections we will consider these recommendations
in terms of their impact on the already baselined SSEDF.

4.2.4.1 An SSEDF Expert System Shell

Several commercially available tools, expert system shells, should be considered as constituents of the
SSEDF toolset, as opposed to the creation of an SSEDF standard Ada shell. Of course, the characteris-
tics which would allow this Commercial of-the-shelf (COTS) shell to be included in the SSE, the
doorway test, would need to be identified before this or other similar selections could take place. What
are some of these criteria that would define the product as being conventional?.

First, a COTS product must be well established and accepted within the marketplace. It must have: a
suitably long history of use; a large base of applications developed with the product; a large community
of developers who have used it (and been trained in it); and a large community of users who have suc-
cessfully used applications produced by the tool. Secondly, the product must run on a variety of con-
ventional platforms under conventional operating systems. Of course, these platforms must be the same
as the ones chosen for use within the SSE, not necessarily the same ones certified for flight systems.
The product must be integrated with mainline application products, ideally using standard interfaces
between or among these products. It must be backed by a strong company, either with strong internal
strengths, or with cooperative marketing arrangements with mainline vendors.

An important milestone for any technology is the development of a standard related to that technology.
To date, there are few, if any, advanced automation standards. It is anticipated that standards for certain
advanced automation technologies (e.g., rule-based knowledge representation and inference) will be
developed in the near future.

Some advanced automation technologies may have reached a level of maturity compatible with their in-
corporation into the SSE. Certain products which use these technologies may meet the criteria of the
SSE doorway test. Less mature technologies may also be included as functions of these products, but
this may not cause any problem if the use of these functions is restricted.

Is an Ada-based expert system shell a necessary development tool within the SSE? Probably not, espe-
ciaily if a commercial tool meets the SSE expert system tool requirements. The delivery of applications
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toflight systemsmayrequirea special expert system shell which will reside on flight hardware and meet
performance requirements.

4.2.4.2 Life Cycle Models

There is no single life cycle model that is suitable for all classes of users and all application domains;
each has its strengths and its weaknesses (see Appendix B). Because the traditional waterfall life cycle
model is the basis for current software acquisition standards, it might seem to be the appropriate choice
for the management of advanced automation software development for the sake of commonality.
However, it is generally agreed that the waterfall model is applicable only to the category of advanced
automation software for which most of the knowledge is acquired from documented sources so that
complete specifications for a system can be derived. Only a small percentage of KBSs fall into this
category. The transform life cycle model offers the advantages of automatic code generation, but it is
difficult to apply in this domain because, like the waterfall model, it is specification-based. Fur-
thermore, the application of the transform model to the development of advanced automated software is
still in the research stage.

Both the iterative model and the spiral model are suitable to manage the development of software with
the special characteristics of KBSs. The iterative model is the most frequently applied life cycle model
because it supports applications with initially ill-defined interfaces and functions. This model easily
provides for the incorporation of expert knowledge and user experience into an iteratively refined prod-
uct. The spiral model is an appropriate model for KBSs because software developed using new and
evolving technologies is best managed and controlled by a life cycle model that directly addresses risk
analysis at repeated intervals throughout the development cycles.

It is recommended that the iterative development model augmented by panel reviews and by further ex-
tensions from Barry Boehm's risk-driven spiral approach be adopted for the management of the devel-
opment of KBSs. Each of the phases identified in the iterative life cycle model can be considered as a
cycle of a spiral, each cycle having essentially the same phases, but with increasing levels of elabora-
tion. This proposed spiral/iterative development life cycle model would apply a management structure
to the development of advanced automation systems that is flexible enough to support the changes that
will occur with new technologies as well as the changes that are an inevitable part of the refinement and
evolution of a KBS. These life cycle recommendations are not in conflict with the recommendations of
Friedland et al. (1988).

Panel reviews would provide continuing requirements documentation, user involvement at all stages of
development, and software verification at the end of each phase. The functions of the panel should be
expanded to include the risk analyses described by Barry Boehm (1988) in his recent article in IEEE
Computer in addition to the functions described by Chris Culbert et al. (1988), as presented more fully
in Appendix B.

Many of the milestones, as well as the critical requirements and test plan documentation, of the tradi-
tional waterfall life cycle model are provided for with this recommended management approach. The
initial requirement review (IRR), preliminary design review (PDR), and system design review (SDR) fit
within this management structure. The panel consolidates requirements into a formal System Re-
quirements Document (SRD) that evolves as the KBS is developed iteratively. A test plan and a library
of test cases evolve during system development. After the KBS passes testing, it can be put under stan-
dard configuration control. Maintenance can be handled in a standard manner, but extensive changes
may require a return to the beginning of the development life cycle.
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4.2.4.3 KBS Verification and Validation

V&V are important activities during all stages of software development, therefore, appropriate V&V
methods will need to be developed for each life cycle phase. The development of V&V methods for
new technologies will be required as these technologies mature and move into the SSE. This does not
imply that existing testing methodologies will not be applicable. It will be the characteristics of these
new technologies which are somehow different from other technologies that may require new V&V
methods.

Since KBSs, especially rule-based systems, are the most mature advanced automation technology, have
the largest user and application base, and will probably be the first of these technologies to be included
the SSEDF toolset, specific attention to V&V methods for these systems should be developed first. The
KBS V&V literature is surprisingly large. There are many theoretical papers and probably an equal
number of pragmatic papers, but the field is a long way from having proven methodologies.

The authors agree with the view of Friedland et al. (1988), and several other authors, that it is a myth
that V&V of KBSs should be extremely difficult or even impossible. The challenging aspects of devel-
oping V&V methodologies specific to KBSs, and other advanced automation systems, will probably
relate to the behavior of the system. These systems attempt to emulate human decision making, and
human inferencing in general, usually in the operation of complex processes. These systems often deal
with problems where more than one correct answer can be generated. Often, human experts will dis-
agree about which answer is the right answer. V&V methodologies for these systems will need to de-
termine not only if the answers generated are correct, but also whether or not they were determined in
the proper manner. (It is possible that the correct answer could be generated for the wrong reasons.)

These characteristics will present validation challenges and have little to do with implementation issues.
Testing these behavioral characteristics will probably be very similar to testing humans. Experts will be
closely associated with the examination of these behaviors. The problem of validating the expert,
proving the worth of the expert, will need to be dealt with. Also, it will be necessary to prove that the
transformation from expert knowledge to code (i.e., rules and facts) was performed correctly.

On the other hand, many aspects of these systems will present fairly common verification problems.
For instance, the process of verifying that an inference engine was built in a proper manner and per-
forms correctly can utilize conventional testing methods. Static code checkers (in this case rule check-
ers) have been developed which check for completeness and consistency, as well as logic errors, within
knowledge bases.

4.2.5 An Organizational Model for Technology Development Evolution

To accomplish the goals of the Office of Space Station- (OSS) and OAST-supported technology
development and test bed integration activities, open communication, technology transfer, and
coordination between these facilities is critical. Most of the laboratory and test bed personnel who were
interviewed requested information from us concerning the activities at other centers, test beds, and
laboratories. Many of these people could not identify an existing communication channel for obtaining
this kind of information. The technical success of these activities depends upon a management
approach to solving these communication and coordination issues. The authors propose a strawman
management process that will facilitate the dissemination of critical information.

Within this process, appropriate technology areas would be identified and key personnel would be se-
lected to participate. An integration team from each technology area would be established, perhaps three
individuals, with one serving as the lead person within each technology area. The responsibilities of
each integration team might include activities similar to the following:
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• Setting up methods for disseminating the technology knowledge base to aLl members of the
technology group (e.g., technical exchange meetings, periodic reports)

• Setting up a peer review process for projects involving the technology, related to the appropriate
application of the technology

• Providing a management individual with immediate feedback on projects which involve either
poor use of the technology or resources

• Reviewing and evaluating all proposals within the technology area as a part of the normal pro-
cess of selecting projects

• Establishing hardware and software standards to maximize interoperability and resource sharing
among laboratories and test beds

• Assuring that proposals to common customers (e.g., facilities, systems, elements) are coordi-
nated

• On a six month basis, setting up with appropriate management a two hour review to discuss

Status of projects or capabilities

Shortfalls in capabilities

Recommendations

4.2.6 An Organizational Model for Application Development Evolution

How can advanced automation tools be brought into the SSE as they mature and at the same time have
the use of immature technologies be restricted? The authors suggest an organizational model that has
served the development communities in several progressive organizations (both commercial and gov-
ernment) very well. With some variations from the ideas proposed here, this model may serve the SSE
equally well. This model is sensitive to the following attributes that impact the acquisition and use of
new technology:

• Development community (i.e., SSE) readiness or awareness

• Advanced automation team approval

• Dollar signature limits

• Procurement cycles

4.2.6.1 Development Community Readiness or Awareness

An important precursor to the development of any system for regulating the use of advanced automation
technologies within the SSE is a review of the current SSE requirements and the augmentation of these
requirements to include necessary capabilities and evolutionary hooks and scars.

Several years ago, at the time that the requirements and the Request for Proposals for the SSE were
being prepared, KBSs were lumped with other Artificial Intelligence (AI) technologies. They were
considered subjects for research laboratories with development and deployment on stand-alone, single-
user, special purpose platforms. Since the development of early KBSs generally was viewed as ad hoc,
one of a kind, and difficult, the policies, procedures, and tools to support KBSs are not included in the
interim environment or the initial environment of the SSE.

KBSs have moved from special purpose hardware to conventional platforms such as will be part of the
SSE and flight systems. Many commercial off-the-shelf (COTS) products are marketed to support the
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developmentand deployment of these KBSs. As KBSs have moved out of the research world, there

has been growing recognition of the impo. rtancc of integration, portabilit.y, fielding, testability, _e_
tainability, and documentation in the design of KBSs. Sortware engineering Is now oemg accep
applicable to the development of a KBS that is carried through to delivery and maintenance (see
Appendix B). When software engineering is applied to KBSs, these systems can be judged, like
conventional software, by their long-term reliability and performance in end-user environments. Tools
and methodologies for V&V of KBSs are being developed.

The MITRE Corporation recently prepared a proposal, through the Engineering Directorate at JSC, to
support the Artificial Intelligence, Expert Systems, and Technology Working Group (AIESTWG) on an
SSE-related task. The objectives of this task are the following:

• Define the extensions to the SSE which will support the life cycle of KBSs

• Define the set of policies, procedures, and tools to be supported by the SSE to aid the develop-
ment and maintenance of KBS applications

• Define program-wide standards related to the software engineering and management of KBSs,
in order to provide support of inter-operability between Space Station Freedom participants,
commonality, V&V, and to reduce life cycle costs

The proposal included examples of tasks which might be done to accomplish these objectives including
the following:

• Definition of additional SSE standards and tools for the support of KBS throughout the soft-
ware life cycle

• Evaluation of the impact of adding the proposed standards and tools to the SSE

• Evaluation of the impact of the proposed standards and tools on the users of the SSE

A similar study is required that would establish the technology readiness of advanced automation tech-
nologies and recommend a list of technologies to be included in the SSEDF toolset.

4.2.6.2 Advanced Automation Technical Review Team

A team made up of technically strong members would provide a first-level review of a request for an
advanced automation tool. This team associates the request with one (or more) of a set of categories
(these categories need to be defined) that apply to advanced automation tools and determines the param-
eters associated with the categories. For example, a request for an expert system shell would be
compared against the set of legal expert system shells (i.e., those that have a stable organization behind
them, those that have been used before in the organization, those that are compatible with the hardware
and operating system software within the organization, etc.). The underlying technologies used within
the shell would be compared with a list of the legal technologies. Approval for the acquisition and use
of the new shell would be determined based on these lists of legal entities, or a review of any new tech-
nologies requested, and a judgement concerning their maturity.

But this team would do more than approve advanced automation procurement requests. It would also
perform the following activities:

• Set up methods for determining which advanced automation technologies and tools are ready
for use within the development community

• Review technologies as they emerge from the SATP and SSFP test beds, as well as other pro-
grams and facilities, for reach'ness
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• Periodicallybriefseniormanagersonthestatusof advancedautomationtools,andrecommend
waysto developtoolawarenessin theSSEcommunity

4.2.6.3 Dollar Signature Limits

This attribute of the review team's responsibilities recognizes that the acquisition of tools (hardware or
software) below a certain dollar level are more-or-less exempt from the acquisition process. The limit
varies with organization, usually in the $1K to $10K region. It has allowed organizations to purchase a
wide variety of PC-based AI hardware and software over the past several years, simply on the signature
of one responsible individual. Such tools have been used for experimentation and prototyping, or in
some cases (like the PC revolution) have provided the means of bypassing mainline ways of doing
business. The latitude offered by applying this rule is a necessary and desirable part of the SSFP devel-
opment process. Of course, conflicts with the list of legal SSEDF tools and technologies would need to
be resolved.

4.2.6.4 Procurement Cycles

When the dollar limit imposed above is exceeded, organizational personnel usually enter a formal pro-
curement process, normally involving more signatures and the awareness or scrutiny of the procure-
ment organization (e.g., a purchasing departmen0. Different paths through the procurement process are
usually available; the SSE requires a special process for the acquisition of advanced automation tools.
This special process requires the approval of the review team.

4.3 APPLICATION EVOLUTION

This section summarizes the preceding discussions as a scenario for the evolution, or movement, of an
advanced automation application through the various SSFP facilities on its way toward use in flight.
Many paths are possible, as shown in Figure 4-2. Which of these paths will be considered legal is un-
certain at this point.

4.3.1 Application Development

4.3.1.1 Pre-SSE Application Development

Prototypes are currently being developed within the various OSS and OAST supported laboratories and
test beds. It is possible that many of these application prototypes will mature to the point where they
can provide important functions to the SSFP before the SSE possesses the capabilities necessary for the
development of applications using the underlying technologies. If this is true, then it is equally possible
that some of these prototypes will become utilized as applications without passing through the
structured world of the SSE. However, the same attention to configuration control and design for
testability and maintainability, which will be fostered by the SSE, must be applied to any deliverable
products developed outside of the SSE.
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4.3.1.2 Post-SSE Application Development

Once advanced automation tools and services are available within the SSE, there are three possible paths
for advanced automation software development. Applications with well-defined requirements that de-
pend upon mature, conventional technologies supported by the SSE should be developed within the
structured and constrained environment of the SSE (i.e., within a SPF). Other, more state-of-the-art,
applications may be developed within the test beds. A third path involves applications developed by in-
temational partners outside of an SSE-supported environment.

4.3.2 Intra-System Integration

The integration of applications within a particular system could take place within the SSE (i.e., on
DMS-kits within a SIF), within test beds (probably using DMS-kits), or at intemational partner facilities
which do not include SSE-supported hardware or software.

4.3.3 Multi-System Integration

Multi-system integration, at least with respect to NASA systems, will take place entirely within the
MSIF. The integration of systems within international partner modules is an open issue.

4.3.4 Ground Testing

Appropriate testing on the ground is an important precursor to moving an application from the ground to
residence and execution onboard Space Station Freedom. A major part of this testing, subsequent to
normal V&V activities, should be parallel operations within the Space Station Control Center (SSCC) or
another ground control or support center, such as a Transition Hight Control Room- (TFCR) like
facility. This type of testing was used as a part of the INCO Expert System Project (IESP) within the
Mission Control Centr (MCC) during the flight of STS-26. The IESP hardware and software execute
beside the Integrated Communications Officers' regular console so that its response to nominal and
contingency operations can be compared with other conventional methods already in use in the MCC.

This type of testing allows the system to be tested in an environment with fewer constraints than would
be imposed by onboard testing. These constraints include safety, performance, size, crew availability,
power, and probably many others. Another benefit of this type of testing is the capability to test small
pieces of specific systems as they are developed rather than testing the entire system in space. Engineers
can test design issues, ground controllers and astronauts can evaluate operations concepts, before the
system is used in space.

The appropriate amount of time required will vary with each system. It is possible, and advisable, to
use many applications on the ground for long periods of time. Many applications could reside perma-
nently on the ground and never have to be limited by the constraints of onboard use. One goal of au-
tomating flight systems is to reduce the number of ground personnel required to support flight opera-
tions. In many cases, this goal can be met with either ground or flight applications.

4.3.5 Onboard Operations

Of course, there are constraints that will require certain applications to reside onboard the Space Station
Freedom. These constraints include safety issues, truly autonomous systems operation (in the sense of
being independent of ground operations), timing requirements, and limited communications bandwidth.
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4.4 SUMMARY OF EVOLUTION ISSUES AND STRATEGIES

As advanced automation technologies mature and standards are defmed, reliable and cost-effective sys-
tems can be built using these new technologies if the laboratories, test beds, SSE, and MSIF are pre-
pared to support their application. Currently, the most mature of the new technologies is KBSs. No
longer are KBSs considered magic; they are just a new kind of software. The development activities for
KBSs correspond in an approximate way to those performed in a conventional software development
project, although they are performed in a somewhat different fashion. To support these differences,
existing facilities need not be replaced; they need merely to evolve to support these new technologies.

Two development environments must exist within the SSFP to promote advanced automation technolo-
gies to the required level of technology readiness: environments for state-of-the-art technology devel-
opment and state-of-the-practice application development. For the SSFP, technology development is
nurtured in laboratories and test beds; application development is supported in the SSE. Evolution of
Space Station Freedom is linked both to the laboratories and test beds and to the SSE software factory.
These existing facilities should evolve technologically in parallel with the evolution of the Space Station
Freedom.

The following evolution issues relating to the existing facilities have been identified and discussed in
this review of SSFP capabilities for the promotion of advanced automation:

• A mechanism is needed that facilitates two way communication between facilities to allow co-
operative problem solving, interoperability, integration, and coordination of existing and
planned SSFP laboratories and test beds.

• Criteria and procedures must be developed for determining the technology readiness of tools
before they can emerge from the laboratories to the test beds and subsequently to the SSE.

• A mechanism is required to evaluate commercially available tools and test bed developed pro-
totypes for technology readiness; doorway tests to gain entrance either to the SSE or the MSIF
must be defined.

• SSE support for a spiral/iterative development life cycle model is required for KBS ap-
plications, where sufficient knowledge is not available for the complete specification of re-
quirements. Specifications are required early in the life cycle of the traditional waterfall life cy-
cle model.

• Development of V&V methods are required for the characteristics of KBSs that make these
systems different from conventional technologies. The problems of validating the expert and
the proving that the transformation of expert knowledge to code (i.e., rules and facts) must be
addressed.

A management approach is required to respond to many of these evolution issues and to manage facility
evolution to accommodate emerging technologies. An integration team with a small number of
members from the new technology area of KBSs is the proposed management model. As new
advanced automation technologies are identified as candidates for the SSFP, additional integration teams
would be established. An integration team would have the responsibility to establish methods for
disseminating the technology knowledge base of that technology; review and evaluate proposals within
the technology area; establish hardware and software standards to maximize interoperability and
resource sharing among laboratories and test beds; coordinate proposals to facilities, systems and
elements; perform peer review of projects involving the technology; and provide feedback to
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4.5 FUTURE EVOLUTION PATH ACTIVITIES

The information, related analyses, and contacts established in the preparation of this report on SSFP
capabilities for the promotion of advanced automation provide a sound foundation for further efforts in
defining a comprehensive SSFP evolution plan. The objectives of the next phase of this task are viewed
to be the definition of evolutionary goals for SSFP test beds and facilities, and the definition of evolu-
tionary paths and plans for reaching these goals. In addition, collective evolutionary goals will be de-
fined for these facilities as a set.

Before the definition of evolution plans, the endpoints (i.e., goals) must be clearly defined. Among the
issues to be addressed in determining these goals are distinguishing criteria, roles and functions; inter-
operability, commonality, and integration; and the development, demonstration, and delivery environ-
ments. Once the destination has been well defined, the fundamental tools needed to get there must be
identified. A general road map for SSFP decision making is needed in addition to test bed-specific
evolution plans. Information from the Transition Program evolution studies as well as system, test bed,
and contractor management will be used to tie these facility evolution plans closely with plans for the
evolution of Space Station Freedom's systems. Another necessary integrating activity is involvement in
the SSE and MSIF requirements definition process and the development of evolutionary plans for the
SSE and MSIF relative to advanced automation.
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APPENDIX A

ADVANCED AUTOMATION

Sections A. 1 and A.2 briefly introduce advanced automation applications and technologies. Readers
familiar with this material might want to skip these sections and continue reading with Section A.3,
Candidate Applications for Space Station Freedom; and Section A.4, Advanced Automation Technology
Readiness.

A.1 APPLICATIONS OF ADVANCED AUTOMATION

Hayes-Roth et al. (1983) present a list of the types of applications for which advanced automation is
applicable, as shown in Table A-1. Advanced automation has been applied successfully to many
problem domains including medicine, geology, aeronautics, and manufacturing, to name just a few.

Table A-1. Categories of Advanced Automation Applications

Category

Interpretation

Prediction

Diagnosis

Design

Planning

Monitoring

Debugging

Repair

Instruction

Control

Problem Addressed

Inferring situation descriptions from sensor data

Inferring likely consequences of given situations

Inferring system malfunctions from observables

Configuring objects under constraints

Designing actions

Comparing observations to planned vulnerabilities

Prescribing remedies for malfunctions

Executing a plan to administer a prescribed remedy

Diagnosing, debugging, and repairing student behavior

Interpreting, predicting, repairing, and monitoring system behaviors

A.2 ADVANCED AUTOMATION TECHNOLOGIES

Over the past two decades, many advanced automation technologies have been born and several have
matured to a degree that greatly enhances the productivity of humans. These technologies can be
classified as providing two primary functions: 1) simulation of human cognitive processes and 2)
human-like interfaces to computer applications. The following sections introduce advanced automation
techniques and interfaces.

A.2.1 Expert Systems and Knowledge-Based Systems

Expert systems are one of the first commercially viable technologies to emerge from the artificial
intelligence (AI) labs of the nation's universities and research centers. According to the Advanced
Technology Advisory Committee (ATAC-, March, 1985):

PRI(:IE_NI_ PAG£ BLANK NOT FILMiK9 75



isa subfieldof artificial intelligence concerned with developing computer

pro .srgms that use knowledge and reasoning techniques in specific domains to emulate the
decision processes of human experts.

Expert systems attempt to emulate human expertise. Knowledge-based systems (KBSs) are similar to
expert systems except they do not specifically model human expertise. Nevertheless, the two names are
used synonymously in this report. KBSs are the most mature AI technology. They are heavily used
within industry and the government. In addition, KBSs, especially rule-based systems, are the most
likely candidates for early use of advanced automation applications onboard Space Station Freedom.
For these reasons, this report concentrates mainly on KBS technologies. It introduces and discusses
other advanced automation technologies: artificial neural systems, fuzzy logic-based systems, natural

languag.e understanding, continuous speech recognition, speech synthesis, and vision and image
processing.

KBSs are highly suited for dealing with ad hoc or inexact information. They define knowledge about a
particular problem domain using heuristics as opposed to specific algorithms. Heuristics are usually
thought of as rules of thumb. Heuristics guide the program to a reasonable solution using qualitative
classifications to form intermediate/hypothetical conclusions as opposed to calculating the exact
solutions with some rigorous mathematical formula. This is akin to the way human experts solve
problems. Humans have little capacity to perform complex mathematical calculations, but are very good
at problem abstraction and pattern recognition. However, KBSs do not preclude the use of algorithms;
in fact, an algorithm may be employed at any time during execution to enhance the problem solving
task. Thus, KBSs are capable of utilizing all the power typically associated with computers and
conventional algorithmic software in addition to emulating the way humans solve problems.

KBSs have typically been considered decision support tools not intended to replace humans but simply
to augment and enhance the decision making process (i.e., a consultant). A KBS typically provides
advice that may be accepted at the discretion of the user. A key feature of most KBSs that differentiate
them from conventional programs is their ability to explain the path of reasoning used in coming to a
conclusion. This self-knowledge is very important since the operator of most decision support systems
likes to know why a response was given rather than just accept it as the absolute conclusion.

KBSs can overcome some problems that human experts are prone to encounter. The exhaustive nature
of problem solving in expert systems ensures that remote or obscure possibilities are not overlooked. It
is very difficult for a human to consider all possibilities; in fact, humans have a tendency to filter out
information that may not appear to be relevant. KBSs eliminate possibilities systematically only when
they are considered absolutely irrelevant and retain all other possibilities until they have all been
investigated. In many cases, expert systems have appeared to be superior to human experts, primarily
because they can consider a much larger set of possible solutions (several orders of magnitude larger).
They do not miss unlikely or unexpected possibilities, as long has these possibilities have been captured
within the knowledge base of the system.

Preservation of expertise is also an important aspect of KBSs. The fact that the knowledge of an expert
has been captured and codified in a formal fashion provides an archive of information that may be used
when the expert is not available. This is vital to the space industry in which knowledge capture has the
potential to play a significant role in the evolution of future space programs.

The ability to distribute expertise that is typically localized is another significant advantage of KBSs.
They are a means of providing expertise to people who may be acquainted with a particular problem
domain but may not be thoroughly proficient at problem solving within that domain. With the aid of
expert systems, both the crew and ground controllers can maintain the health of Space Station Freedom
without being required to possess an overwhelming amount of knowledge.
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KBSshavetwomajorcomponents:aknowledge base and an inference engine (see Figure A-l). It is
the knowledge base that contains a codified version of the expert's knowledge. Furthermore, it is the
knowledge base that contains general knowledge about the domain that may or may not be considered
part of the expertise. This is why many people call programs that incorporate such information KBSs
rather than expert systems. The knowledge base contains two types of information: declarative
knowledge and procedural knowledge. Declarative knowledge consists of the facts that describe the
objects of the domain and possible operating characteristics of the objects if applicable to the domain.
Procedural knowledge consists of information about the action to be taken in certain situations based on
the current state of the declarative knowledge. Both types of knowledge can take on many different
forms; such forms are rules, objects/frames, and models, depending on the type of inference mechanism
used.

Knowledge
Engineer

Expe_

End User

Knowledge Base

External External
Information Declarative Procedural Action

Sources Knowledge Knowledge Receivers
(sensors) (actuators)

Inference Engine

Execute procedural knowledge, possibly
change declarative knowledge, and query
end user for necessary information

End User )

Figure A-I. General Architecture of Knowledge-Based Systems

The inference engine interprets the knowledge base. It embodies the strategies that are used to decide
the order in which knowledge is processed, how to find missing information, and how to determine
when an acceptable solution as been reached.

The fact that the inference engine and the knowledge base are separate entities allows the use of a single
inference engine to process knowledge bases from different domains. Also, a single knowledge base
may be processed by different types of inference engines. Thus expert system development envi-
ronments (or shells) support the acquisition of knowledge from a knowledge engineer, who extracts the
expert's knowledge and encodes it in the knowledge representation appropriate for the problem and the
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choseninferenceengine.Theinferenceengineis responsiblefor theexecutionof theprocedural
knowledgewhichmayresultin changingdeclarativeknowledgedirectlybytheconclusionsmade,or
indirectlybythequeriesmadeof theuser.In addition,manyKBSsallowdeclarativeknowledgeto be
changedbyexternalinformationsourcessuchassensorsandallowproceduralknowledgeto instigate
externalactionssuchascommandstoactuators.

KBSs differ significantly according to the inference mechanism and the knowledge representation used.
The following sections introduce the architectures, inference mechanisms, and knowledge represen-
tation schemas used within KBSs. Table A-2 lists these topics, along with other advanced automation
topics introduced below.

Table A-2. Advanced Automation Architectures, Techniques, and Interfaces

Advanced Automation Architectures

Logic-based Architectures
Rule-based Architectures
Frame-based Architectures
Neural Network-based Architectures

Semantic Net Architectures
Blackboard Architectures
Model-based Architectures
Fuzzy Logic-based Architectures

Inferencing Techniques

State-space Search
Generate and Test

Forward/Backward Chaining
Discrete Event Simulation

Knowledge Representation Schemas

Logic Clauses
Semantic Networks
Neural Networks

Rules

Frames/Objects

AI Man-Machine Interface Extensions

Natural Language Understanding
Speech Synthesis
Other Human-like Perceptions

Continuous Speech Recognition
Vision and Image Processing

A.2.1.1 Logic-Based Systems

Logic-based systems were one of the first attempts made by AI researchers to codify knowledge and to
infer or reason upon that knowledge. They were influenced by formal logic, the classical approach to
representing knowledge and making inferences from facts. Formal logic was developed long before the
advent of modem electronic computers and used by philosophers and mathematicians as a logic based
calculus (i.e., predicate calculus).
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Theprimaryaspectof logic-basedsystemsistheirabilitytoderivenewfactsbasedongivenorknown
setof facts.Forexample,assumeit isknownthat"All normaldogshavefourlegs"andthat"Fidoisa
normaldog,"thenit canbeinferredthat"Fidohasfourlegs."

Prologisanotableexampleof a logicbasedlanguagein whichboth the facts and derivations of addi-
tional facts may be represented in the form of clauses.

A.2.1.2 Semantic Net Systems

Semantic nets use a knowledge representation schema that allows the declarative knowledge to be repre-
sented semantically; thus, supporting the translation to many different forms of syntax. Information is
linked together with descriptive links such as: is-part-of, is-a, sub-class-of. The key feature is that
important associations may be made explicitly rather than having to be derived. Relevant facts about an
object or concept can be inferred directly from the connection of the nodes in the net, as opposed to
searching a large data base.

A.2.1.3 Rule-based/Production Systems

Rule-based systems, often called production systems, contain procedural knowledge represented as
rules typically in the following form:

IF <premises> THEN <assertions>

These rules are the heuristics of the expert system and may be interpreted in various fashions. For ex-
ample, if the premises within the left-hand side of a rule are all satisfied (true or false) by facts within
the knowledge base, the inference engine will execute the assertions on the right-hand side of the role.
These assertions may create or alter facts within the knowledge base or they may execute procedural
code.

A.2.1.4 Blackboard Systems

Blackboard systems implement an opportunistic approach in which pieces of knowledge are applied ei-
ther backward or forward at the most opportune time (Nii, 1986 a, 1986b). The goal of blackboard
systems is to extend the robustness of rule-based systems to deal with the declarative and procedural
knowledge in an ad hoc manner. They are an excellent approach to integrating expertise from multiple
domains. This is especially important when there does not appear to be a common vocabulary for
communicating across domains or when the solutions of such domains require significantly different
problem solving (inferencing) techniques. This is accomplished by the use of multiple knowledge
sources and a common communication area referred to as the blackboard.

A.2.1.5 Model-Based Systems

Model-based systems are expert systems in which models have been incorporated with rules to provide
a robust representation of the structural and operational characteristics of a physical system. Model-
based systems embody a level of knowledge typically deeper than that possessed by strictly rule-based
systems. This results in an expert system with significantly higher fidelity. Models can be described
either quantitatively using conventional algorithms or qualitatively using naive physics encoded with
some basic heuristics.

A.2.1.6 Frame-Based Systems

Frame-based systems utilize the expressive power associated with object-oriented programming ap-
proaches. Knowledge about an object is stored within a frame. Each piece of information within a
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frameis storedwithina slot. Frames and slots are named. For instance, a frame used to describe a car
might have a slot called "Number of Wheels"; for most cars this slot would then contain the number 4.
An important aspect of frame-based systems is inheritance. Frames are excellent for storing information
about classes of objects in a hierarchical or tree-like fashion. Inheritance allows objects which are lower
in the tree to automatically inherit characteristics of objects which are higher in the tree. For example, a
frame describing a Corvette would not have to explicitly denote that a Corvette has 4 wheels since it can
inherit this information from the frame describing cars. If a model was described that had only 3
wheels, then this information would be explicitly declared and would override any inheritance. Slots
can also store executable code. These procedures can be invoked upon the occurrence of certain events
such as a change to a specific slot's value or the specific value within a slot. Therefore, the inference
mechanism of frame-based systems is contained within these procedures.

A.2.1.7 Hybrid Systems

Hybrid systems are potentially the most viable manifestation of expert system technologies. None of
the above expert system architectures can claim to solve all problems; in fact, most are suitable for
solving only limited classes of problems. Hybrid systems are the cooperative combination of any of the
above expert system methodologies; possibly with conventional procedural languages as well. Space
Station Freedom will ultimately include hybrid systems that incorporate the heuristic nature of role-
based systems, the qualitative/quantitative models of model-based systems, and the object-oriented
knowledge representation of frame-based systems, with separable applications tied together by the co-
operative opportunistic aspect of blackboard architectures. Furthermore, conventional procedures will
strongly influence the decision making processes by providing additional information and they will also
perform routine tasks.

A.2.2 Emerging Advanced Automation Technologies

Recently, other forms of AI research related to automated decision making are also maturing. These in-
clude artificial neural networks and fuzzy logic systems. These emerging advanced technologies, and
others yet to come, may be additional or replacement components of the hybrid systems discussed
above. For example, conventional image processing techniques could be replaced by the pattem recog-
nition power of neural networks, and conventional algorithms for dealing with uncertainty may be re-
placed with fuzzy logic.

A.2.2.1 Artificial Neural Systems

In the past twenty years, studies of the function and structure of the mamm_an brain, and innovative
techniques developed by computer scientists, have allowed the development of a powerful new
computing paradigm known as Artificial Neural Networks (l..ippmann, 1987) [also known as Parallel
Distributed Processing (Rumelhart and McClelland, 1986), and Neural Computing (Anderson and
Rosenfeld, 1988)]. This paradigm is mathematically and logically based, and is neurophysiologically
inspired.

Neural networks have been applied to tasks which humans find easy (e.g., vision (Oyster et al., 1986;
Koch et al., 1986; Golden, 1986), movement (Jorgensen, 1987), pattern recognition (Sayeh and Han,
1987; Fukushima, 1986), image analysis (CottreU et al., 1986; Oyster and Skrzypek, 1987), speech
(Sejnowski and Rosenberg, 1986; Elman and Zipser, 1987), but are not very useful for the types of
problems which algorithmic computing is often used (number crunching). Because neural networks are
excellent pattem matching and classification systems, and because the parallel nature of neural networks
allows them to operate very rapidly, they are highly suited for many space-borne applications.

Neural network models are characterized by multiple, non-linear computing nodes (analogous to
biological neurons) which are highly interconnected in layers and operate in a parallel fashion
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A.2.2.2 Fuzzy Logic-Based Systems

Human beings have a remarkable ability to make decisions or give approximate answers to questions
based on knowledge that is inexact, incomplete, or not totally reliable. Fuzzy logic, based on fuzzy set
theory, was developed as a method to allow computers to deal with these types of problems.

Fuzzy set theory was introduced by Lofti Zadeh (Zadeh, 1965) as a generalization of classical set the-
ory. A fuzzy set does not have the sharp boundaries of a nonfuzzy set. An object is either a member or
a nonmember of a nonfuzzy set, but it has a degree (or grade) of membership (ranging from 0 to 1) in a
fuzzy set. Fuzzy sets are often derived from qualitative natural language concepts such as small,
medium, and large. A graph of the degree of membership of the numbers from 1 to 100 in the fuzzy
sets small numbers, medium numbers, and large numbers is given in Figure A-3. Fuzzy set mem-
bership is of course application specific, but the algorithms dealing with fuzzy sets are independent of
the application and mathematically rigorous.
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Figure A-3. Fuzzy Set Membership: Small, Medium, and Large Integers

Fuzzy logic is an extension of classical two-valued and multi-valued logic. In two-valued logic a state-
ment is either true or false. In classical multi-valued logic a statement can have a truth value between 0
(false) and 1 (true), where intermediate values represent degrees of troth. Statements in fuzzy logic
have truth values which are themselves fuzzy (very true, mostly true, not quite true, unlikely, etc.).
Fuzzy logic can also deal with inexact concepts (small, large, near, far), imprecise quantifiers (few,
several, many), and modifiers such as slightly or much (Zadeh, 1988).

Areas of application of fuzzy sets and logic include expert systems (7adeh, 1983), pattem classification
(Kandel, 1982), knowledge representation (Zadeh, October 1983), and control theory (Maiers and
Sherif, 1985; Mamdani and B. R. Gaines, 1981). Expert system shells incorporating fuzzy logic are
commercially available. Currently fuzzy logic is implemented in software. However, a fuzzy logic chip
was developed by Bell Labs in 1985 and a fuzzy computer has been built at Kumamoto University in
Japan. This computer is capable of performing 10 megaFLIPS (fuzzy logical inferences per second).
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(analogousto biologicalneuralnetworks).Anexampleframeworkfor aneuralnetworkis shownin
FigureA-2. Nodeswithinaneuralnetworkarearrangedinto layersandareconnectedby weights
whichareadaptiveduringtraining.Trainingof neuralnetworkscantakeplaceinasupervisedorunsu-
pervisedmanner.

Output

Hidden

Input

Figure A-2. Example Neural Network Model

In supervised learning, input/output training pairs are used to train the network. Initially, the weights of
the network are randomly generated. Stimuli (e.g., some input pattern) are introduced to the input
layer. This activation of each input node is multiplied by the weights which connect that node to the
hidden layer(s) nodes. Each hidden layer node sums these inputs (both excitatory and inhibitory) and
this sum is fed to an activation function which determines whether the hidden layer node willfire, i.e.,
what the output of that node should be.

In a like manner, the hidden layer outputs are multiplied by the weights connecting the hidden and out-
put layers to compute the activation (output) of each output layer node. This observed output pattern is
compared to the expected output pattern (associated with this particular pair of input/output patterns) and
the difference is used to adjust the weights of the network to allow it to recognize this specific input
pattern and produce the correct output pattern. This procedure is repeated for all input/output pairs until
the network can correctly identify all patterns correctly.

In unsupervised learning, input patterns are used, but not output patterns. The network simply associ-
ates similar input patterns into the same category. There are many different neural network models
which use different leaming algorithms to adjust the weights during training, each being more suited to
particular tasks.

Once a neural network has learned to correctly associate input patterns to output pattems, or output cate-
gories, the network can be used to classify or identify patterns introduced to its input layer nodes. Us-
ing massively-parallel hardware, the time required to generate an answer will not depend on the size of
the network; however, most applications are currently implemented using conventional software simu-
lations and, in most cases, solutions are produced much more rapidly than typical rule-based expert
systems. If the network is implemented on truly parallel hardware, then it will most likely out-perform
many conventional algorithms running on serial machines.
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A.2.3 Advanced Automation Interfaces

Significant advances in human-computer interfaces have been made due to AI research. High-resolution
bitmapped displays with window interfaces and graphical input devices are spinoffs from AI research
that have already become a mainstay in personal and professional computing. These interfaces support
communication between man and computer giving more freedom to the end user interact in an ad hoc
manner. Although these interfaces still require that the user learn certain skills, they make interaction
with the computer more user friendly.

AI research has long been concemed with making the interaction between the human and the computer
closer to the manner in which humans interact with each other. Natural language, speech recognition,
speech synthesis, and vision and image processing are examples of AI computer interfaces.

A.2.3.1 Natural Language Understanding

The goal of natural language understanding is to allow a user of an application to enter commands or
data to the computer using the complete, natural language (e.g., English or Japanese). In other words,
the computer must understand the semantics of this language to allow it to communicate with the user in
a manner constrained only by that language. According to Ban" and Feigenbaum (1981),

So far, programs have been written that are quite successful at processing somewhat constrained
input. The user is limited in either the structural variation of his sentences (syntax constrained
by an artificial grammar) or in the number of things he can mean (in domains with constrained
semantics).

Although this area of AI has progressed to a degree adequate enough to provide sophisticated front ends
for many. applications, it still has a long way to go before computers can understand a full range of
meaning m a language such as English.

The most notable examples of natural language understanding have been applied to domains involving
robot control and data base query. These domains are highly suited to the current limitations of natural
language understanding, since the robot is usually constrained by a relatively small world consisting of
predefined objects and a limited set of possible movements and the data base is constrained by the types
of queries that may be performed and a limited number of fields that may be accessed.

The primary disadvantage of comprehensive natural language understanding is that it may embody too
many human characteristics. That is, humans are very prone to making unclear or ambiguous state-
ments and are susceptible to misunderstanding others. In space bome applications, there is usually little
room for such an error. There are advantages to having constrained vocabularies when operation or
control are concemed. This is illustrated by the command language used in any branch of the military.
The military attaches precise meaning to certain commands; thus, guaranteeing that when an order is
given, the commanding officer can be assured that he is understood completely.

A.2.3.2 Continuous Speech Recognition

Even the modest natural language understanding systems available today constrain the user by allowing
only typed input. Continuous speech recognition is the mechanism by which the user may be relieved
of the hands-on duty normally required to interact with a computer. Recognition of connected speech,
combined with natural language processing, will allow an astronaut to tell a computer to do specific
tasks in addition to answering questions posed by the computer.

Speech recognition systems exist today, however, these systems are very limited and are usually con-
strained to recognition of single words spoken alone and slowly. These systems must also be trained
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byeachusertorecognizethewordsspokenbya particular user. Continuous speech recognition, on the
other hand, is a much more difficult problem. Problems arise from the need to separate one spoken
word from the next or previously spoken word. In addition, speech must be separated from back-
ground noise such as other conversations and the sound of operating machines. The computer must
also be able to realize when the user is speaking to it and not to someone else in the same vicinity. For
instance, if the user says, "If I say 'Start the engine', the computer will fire the main engine," the com-
puter must realize that the user is speaking to someone else and not pick out the words "start the engine"
from the sentence and execute the command.

A.2.3.3 Speech Synthesis

Providing a computer the capability to communicate with a user in the user's natural language will be
essential in many situations. For example, an astronaut's attention can be drawn by auditory warnings
and suggestions more easily than by conventional messages presented on a display device simply be-
cause the astronaut does not have to continually look at something in order to receive the message.
Speech synthesis devices exist today but many of them are constrained to the point where they sound
robot-like.

A.2.3.4 Vision and Image Processing

Vision and image processing is currently being utilized in many factories and laboratories to perform a
variety of tasks. It has several sub-fields that range from simple picture processing (noise filtering) and
object classification to complex scene analysis. Vision and image processing will enhance the au-
tonomous ability of the intelligent control systems of Space Station Freedom. Furthermore, with active
vision systems the computer may actually watch the astronaut and be able to predict his or her interest
based on eye movement and any other gestures.

A.3 CANDIDATE APPLICATIONS FOR SPACE STATION FREEDOM

The Space Station Freedom Program (SSFP) can incorporate advanced automation in both ground and
onboard software systems. Hundreds of potential applications for use onboard Space Station Freedom
have been identified in SSFP documentation and in studies. These lists can be reduced to several gen-
eral application areas common to many Space Station Freedom applications. For example, Boeing
(November, 1987) extracted a list of 60 candidates for a group they called autonomous system man-
agers. This category of application was defined to embody sensing, data collection and analysis, trend
development, automatic planning, automatic decision making and interaction with human crew mem-
bers. A subset of this category (37 candidates) were applications with a smart analyzer function. These
included such applications as performance monitors, medical monitors, automatic calibrators, and fault
predictor/analyzer/managers. All of the candidates in the smart analyzer group have similar characteris-
tics that include collection of sensor data, comparison of that data with data bases or models, automatic
inferencing, and the output of results as as commands and displays.

The following list is another classification of the basic functional characteristics of advanced automation
candidates for Space Station Freedom systems:

• Fault Detection Isolation and Recovery (FDIR)

• Control and Monitoring

• Caution and Warning

• Intelligent Reconfiguration
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• PlanningandResourceManagement

A.4 ADVANCED AUTOMATION TECHNOLOGY READINESS

The readiness of the various advanced automation technologies, tools, and application areas will play a
large role in our discussions of evolution paths for advanced automation in Section 4. The following
paragraphs, figures, and tables serve to introduce concepts related to technology readiness by example,
using technology assessment curves and candidate application technology readiness information gener-
ated in a preceding study. It is not our goal here to explicitly identify the technology readiness level of
advanced automation technologies, tools, or candidate applications. This information was taken from
Boeing (1987) and the authors do not necessarily agree with or defend the accuracy of this information.
They simply suggest that technology readiness information will need to be derived relative to the various
applications, and the underlying advanced automation and conventional technologies, used within the
SSFP for effective planning and evolutionary growth.

A.4.1 Technology Assessment Curves

The Boeing report identified the following technologies which would be required for both the au-
tonomous system manager and the fault predictor/analyzer/manager systems: computing, KBSs, plan-
ning, and speech. The following figures present technology assessment curves for each of these tech-
nologies.
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A.4.2 Candidate Application Technology Readiness

The following tables present information from the Boeing report relative to the availability dates of level
6 technology readiness (i.e., prototype or engineering model tested in relevant environment). Again,
these data serve only as examples.

Table A-3. Autonomous System Manager Level 6 Readiness

Technology

Speech 3

Planning 3

Computing 3

KBS 3.5

Technolol_y Capability Level

Continuous speech, 200 words, speaker
independent, low noise background, and low
stress condition

Reasoning of actions and of resource constraints
so that scheduling systems can be interfaced with
automatic planners

1 GFLOPS, 100 Mbyte main memory, 100 Gbyte
mass storage, general application distributed

processin_

Beyond the capability of expert systems o reason
about interactions among subsystems,
synchronization of processes, reasoning about
inconsistent information and data errors, but not

yet to the stage of utilizing fairly general models
for reasoning and explanation

Level 6 Year

1992

1995

1996

1996

Table A-4. Fault Predictor/Analyzer/Manager Level 6 Readiness

Technology

Speech

Computing

Planning

KBS

4

4

Technology Capability Level

Continuous speech, 10,000 words, speaker
independent, natural grammar, under moderate
noise and moderate stress condition

Large real-time AI applications, general application
parallel processin_

Reasoning about 3-D spatial relationships,
complex planning involving coordination of
multiple planners

Expert systems utilizing fairly general models
for reasoning and explanation

Level 6 Year

1995

1996

1998

1999
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APPENDIX B

SOFTWARE ENGINEERING FOR ADVANCED AUTOMATION

There is growing recognition of the importance of integration, portability, fielding, testability,
maintainability, debugging support, and documentation in the design of Knowledge-Based Systems
(KBSs). Software engineering is now being accepted as applicable to the development of a KBS that is
carried through to delivery and maintenance. When software engineering is applied to KBSs, they
should be recognized as real, deliverable software that is judged, like conventional software, by its
long-term reliability and performance in end-user environments (Rothenberg et al., 1987). This section
addresses the software engineering activities relative to KBSs and the software life cycle required to
manage these activities.

B.1 SOFTWARE ENGINEERING ACTIVITIES

KBSs are not magic; they are just a new kind of software. There are many similarities between the de-
velopment process for a KBS and the development process for a decision support system or a simula-
tion model (Friel and Mayer, 1985). The development activities correspond in an approximate way to
those performed in a conventional software development project, although they are performed in a
somewhat different fashion. The following paragraphs address the software engineering activities and
the environment, i.e., the techniques, methods and tools, required to support advanced automation
software throughout the life cycle.

B.I.I Concept Formulation

The development process for a KBS starts with the identification of an appropriate problem. This pro-
cess begins with an assessment of the fundamental requirements that the system must accomplish.
Based on these basic requirements, the task is characterized, the knowledge domain, representation re-
quirements, and world interface requirements are roughly estimated; the reasoning process involved is
determined; and finally the decision is made on the admissibility of the task to a knowledge-based so-
lution (Friel and Mayer, 1988). The problem must be one which cannot satisfactorily be solved by
conventional computer techniques. It should have symbolic structure and there should be heuristics
available for its solution. For a problem to be amenable to solution by a KBS at this time, the problem
domain must be narrow and well bounded, the task must require cognitive skills instead of common
sense, and the problem must be clearly defined and understood (Turban, 1988).

B.1.2 Requirements Definition Activities

For a KBS, the first step in defining the requirements is a front-end analysis to provide a high level
statement of system functional design requirements (i.e., major goals and functions of the system) to
later support the validation of the system. Requirements documentation developed at this stage is usu-
ally incomplete. The requirements should specify money, time, and other resources for the prototyping
that is frequently required to define more complete requirements.

Rapid prototyping is central to the methodology for defining the detailed requirements for a KBS. A
quickly built, small-scale version of the system generates an understanding of the problem and tests the
feasibility of the KBS so that the real system can then be specified and implemented. This small-scale
working program is used to explore the application domain with the participation of the expert. The
prototype helps to determine the structure of the knowledge base; it accelerates the process of knowl-
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edgeacquisition;andit providesinformationabouttheinitialdefinitionof theproblemdomain (Turban,
1988).

At the conclusion of the rapid prototyping, the initial requirements documents are augmented by the de-
velopers, domain expert, and the users. Decisions are made about project directions. At this time, it
can be decided whether to do another prototype, to discontinue the project because the high level re-
quirements cannot be met, or to move into the iterative development phase of the software life cycle
(Richardson and Wong, 1987).

B.1.3 Design Activities

The design of the early KBSs generally was ad hoc, one of a kind, and difficult to manage. As KBSs
move out of the lab and into industry, the systems are being designed for testability and for
maintainability. The design process for a KBS is more closely related to the design process associated
with a simulation model than to the design activity normally associated with other conventional soft-
ware. The designer attempts to create a problem solving mechanism that emulates the reasoning pro-
cesses and the knowledge of the human expert. The result of this activity is a design of the control
strategy (i.e., the system architecture) and the knowledge representation strategy for the system, fol-
lowed by the selection of a tool that supports these strategies. Documentation of all design decisions
and the constraints that affected these decisions supports testability and maintainability.

B.1.3.1 Architecture Selection

The architecture of a KBS is the design of the control component (i.e., inferencing mechanism) for the
KBS. The architecture represents the problem solving strategy for the system. Citrenbaum and
Geissman (1986) suggest that the architecture be selected based on the size of the solution space. The
choices range from simple exhaustive search to a set of cooperating subsystems following multiple lines
of reasoning. The approach to chaining of rules depends on the depth and breadth of the problem, the
anticipated strength of inferences, and the extent to which subproblems are likely to interact. It may be
data-driven (i.e., forward chaining), goal-driven (i.e., backward chaining), mixed forward and back-
ward chaining, opportunistic (i.e., blackboard control architecture), frame-based with inheritance net-
works, script-based, or goal-driven logic (i.e., PROLOG). Search may be depth- or breadth-first, or
follow some optimizing strategy.

Geissman and Schultz (1988) define structured design of a KBS as formally defining one or more
inferencing mechanisms, selected from a limited set of inferencing mechanisms that are certified, as
compilers are certified for conventional programming languages. Verification and validation (V&V) is
independently performed on any escapes to procedural code that might modify working memory or the
value of an item in an inheritance network. As candidate inferencing mechanisms for certification,
Geissman and Schultz identify frames with inheritance networks, backward- and forward-chaining
production systems, and goal-driven logic (i.e., PROLOG), all of which represent discrete event net-
works such that the future state of the system is the result of the initial state and and a number of transi-
tions. Tools have been built to analyze the logical consistency of a knowledge base expressed in terms
of one of these inferencing mechanisms.

B.1.3.2 Knowledge Representation

Because a large amount of knowledge is needed for a KBS, a good knowledge representation scheme is
required to support the access, update, and maintenance of this knowledge. KBSs use semantic net-
works, frames, Prolog clauses, and many other schemes for presenting knowledge. Each has its ad-
vantages and its weaknesses. However, they all provide a high level of abstraction and separate the
problem solver from the knowledge.
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JacobandFroscher(1987)haveproposedadesignmethodologyfor rule-basedsystemsthatdividesthe
setof rulesintogroupsof rulesandthenconcentrates on those facts that carry information between rules
in different groups. The knowledge engineer declares groups of rules, flags all between-group facts,
and provides descriptions of those facts to any rule groups that use such facts. These descriptions help
the programmers in updating or maintaining the knowledge base.

B.I.3.3 Tool Selection

Commercial tools that support the development of KBSs make it possible to develop such a system in
an order of magnitude less time than would be required with the use of development languages such as
Lisp (Gevarter, 1987). These tools range from simple shells, into which information is inserted to cre-
ate an expert system directly, to a collection of different paradigms incorporated into a single tool, which
may be considered a high order programming language or environment. What these tools have in
common is the minimum set of a knowledge representation scheme, an inference or search mechanism,
a means of describing a problem, and a way to determine the status of a problem while it is being solved
(Citrenbaum et al., 1987). Unlike tools for conventional software development, some portion of the
support environment that is provided by a tool used to build a KBS becomes part of the completed
KBS.

Tools are designed to help the system developer represent knowledge and get an initial version of a
KBS working quickly so that the domain expert can observe its behavior and suggest revisions or
modifications. For complex KBSs that stretch the capabilities of existing tools, tailored inference en-
gine(s) and search methods may be worth the time and expense. Nevertheless, it is advisable to do
rapid prototyping work with an existing tool and then, once the requirements of the system are well un-
derstood, make a careful assessment of a custom-built solution.

The large number of tools now on the market and the pace at which new ideas are being incorporated in
tools can make the selection of a tool very difficult, but a properly selected tool may provide a close
match to the developer and end-user needs. There is no single best tool for all knowledge-based
applications. Virtually each tool is unique and no tool has a large pool of skilled users. Each tool has
its own purposes and strengths and may complement other tools by being used at different times in a
project's life cycle. For example, one tool might be used as an initial tool for use in rapid prototyping to
better understand the requirements and another tool may be used in the iterative development phase of
the software life cycle. This might be caused either by the different requirements of the two phases of
the life cycle or by changes in the requirements discovered during the initial prototyping phase.

The task of selecting a tool amounts to finding the bestfit to the intended use. The identification of the
basic category of the task to be performed by the KBS, along with the appropriate architecture and
knowledge representation to support this category of task, will ultimately have a strong effect on the se-
lection of an implementation tool (Friel and Mayer, 1985). Tool choices should also be guided by the
size of the system to be built, how rapidly a system of the given size and complexity can be built with
the tool, the speed of operation of the tool both during development and, particularly, during end use.
Other important factors are the degree of satisfaction of both the developer and the end user based on
properties such as the match of tool features to the problem's characteristics, the developer and end-user
interfaces, and the ease of learning. The system's portability, the computers it will run on, the delivery
environment, the system's capability of interfacing with other programs and data bases, and whether the
developed system can be readily embedded in a larger system are all important in an evaluation of a tool
(Gevarter, 1987).

The trend in commercial tools is toward less expensive, faster, more versatile, and more portable tools
that will support development of systems that can directly communicate with existing conventional
software (e.g., data bases) and can be embedded into larger systems. They are moving from Lisp ma-
chines to more conventional workstations and micro computers (Gevarter, 1987). In response to the
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programanddatabaseinterfaceandtheembeddabilityproblems,current research is also addressing the
addition of data-driven, role-based expert system techniques to an existing, compiled, procedural lan-
guage while preserving the features, syntax, semantics, and development process of the procedural
language (Milliken et al., 1988; Harston and Martinez, 1988).

B.1.4 Development Activities

The objective of the system development activities is to develop and implement the system architecture
and knowledge representation using the selected tool. The detailed knowledge about the domain is ex-
tracted and encoded. The result is a functioning KBS. These systems require new techniques, referred
to as knowledge engineering, to extract knowledge from human experts. Although textbooks, hand-
books, and data bases are sources of knowledge, human experts provide undocumented knowledge that
is more complex than the knowledge found in these documented sources. Human knowledge, based
on experience and common sense, often can be expressed in terms of heuristics (i.e., rules of thumb).
Such knowledge is hard to extract from people because they cannot articulate just how they solve a
problem without applying the knowledge in context.

B.1.4.1 Code

Coding of a KBS is not the final mechanistic step at the end of the design process (as it is in the devel-
opment of conventional software), but is part of the iterative design process. The system's heuristics
and knowledge base grow through an evolutionary process to deal with the full complexity of the prob-
lem. Interfaces to other systems, data bases, and data-capture devices, in addition to a sophisticated
user interface are developed.

Domain experts and end users are repeatedly shown a working system as it is being developed so that
they can test the system with real problems that they have handled. The knowledge and rule base are
enhanced based on this exercise, thereby iteratively developing the system. A test case library should be
developed in parallel with the coding (Citrenbaum and Geissman, 1986).

B.1.4.2 Unit Test on Development System

Because the testing of a KBS includes determining the correctness of the reasoning, testing is different
from that of conventional systems. This presents some new problems for testing. The first problem is
that KBSs often show non-deterministic behavior because the conflict resolution strategy can depend on
execution-time parameters, making the behavior unrepeatable and therefore more difficult to test. The
second problem is that conventional input-output analysis for testing is difficult to use because there is
no precise input-output relationship for rules as there are for procedures in conventional software. The
third problem is that the number of ways rules can be activated is usually too large to use branch-and-
path-coverage tools (Ramamoorthy et al., 1987).

One answer to these problems is to have users, in addition to the domain expert, evaluate the system as
it is being iteratively developed. This evaluation is done in a simulated environment where the system is
exposed to test problems, either historical cases or cases provided by the users. When this evaluation
reveals cases not handled by the system, new rules are added or old rules are modified. Each time a
substantial change is made, testing must be repeated. When the system reaches an acceptable level of
stability and quality, it may be ported to a delivery system prior to integrated testing.

B.1.4.3 Port to Delivery System

Small systems are being developed, implemented, and used on PCs today. However, porting to a de-
livery system is usually required after large systems are developed. In order to take advantage of the
powerful tools that support iterative development of KBSs, large systems are frequently developed on
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special-purposeworkstationsoronstandardcomputersotherthanthecomputeronwhichthecompleted
systemwill reside.Thesystemmayberequiredto executeonspecifiedhardware(e.g.,StandardData
Processors(SDP)of SpaceStationFreedom).Theoptimizationof performancemayrequireadelivery
systemdifferentfromthedevelopmentsystem.Usually,in ordertoimproveperformance,onlysub-
elementsof thetool(withthedevelopmentportionremoved)actasasoftwaredeliveryvehicleforthe
developedexpertsystem.Altematively,thewholesystemmayberewrittenin anapprovedor faster,
moreportablesoftwareset,suchasAda,C,orCLIPS(aNASAdevelopedshell).

B.1.5 Unit Test on Delivery System

The battery of tests developed for unit testing on the development system are repeated on the delivery
system in a simulated environment. This is followed by integrated testing to check out the system's
interfaces.

B.1.6 Independent Verification/Acceptance Activities

V&V should be included as an important activity within each phase of the software life cycle. New
V&V methods will be required for each technology only where there are new characteristics which can-
not be tested using existing methods. User acceptance is the final measure of success of a KBS. In
many instances, the users will decide whether to use a system and how to use it. Users must evaluate
for themselves how effectively they are able to use the system in their real world domain (Richardson
and Wong, 1987).

B.1.7 Operations Activities

Usually a KBS is used in parallel with a human expert for some period of time. Many systems never
reach finalization; they are continually being developed. Nevertheless, documentation and maintenance
plans are just as important as for conventional software (Turban, 1988). Many tools used to support the
operations of conventional programs can be adapted for KBS programming. These tools include ver-
sion management systems, configuration management systems, and modification request systems
(Ramamoorthy et al., 1987).

B.1.7.1 Configuration Management

At some time in the development, the on-going enhancement of the KBS must be separated from the
maintenance of the system. Two copies are made of the system. One copy is frozen and is maintained
but no longer enhanced in any significant way. Enhancement continues on the other copy, which will
continue to evolve and eventually replace the frozen system. Tools and methodologies to support this
configuration management activity are like those for conventional software.

B.1.7.2 Maintenance

The objective of maintenance is to evaluate and enhance the system as necessary to improve system
performance. In a conventional system, maintenance occurs only in the operations stage and refers to
the correction of bugs and changes to the code. Maintenance and modification of a KBS is an important
and continuous part of the development as well as the operational activities because the emphasis at all
stages Is on the growth of the knowledge base. Rules evolve with the experience of their use and are
therefore modified more often than algorithms. Because rules can be time-dependent, their validity can
change over time (Ramamoorthy et al., 1987).
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B.2 SOFTWARE LIFE CYCLE MODELS

Effective management techniques are required for the development and maintenance of any type of
software. A number of software life cycle models have evolved to manage the software process for
conventional applications. Each model identifies the phases in the development and evolution of soft-
ware, defines the order of these phases, and establishes the transition criteria for progressing from one
phase to the next.

In the earliest days of software development the life cycle model was a two step code-and-fix model.
This most often led to poorly structured code that was a poor match to users' needs and was difficult to
test and modify. From this experience the needs for requirements, design, test, and maintenance were
recognized. A stage-wise model emerged which identified eight sequential stages. This stage-wise
model evolved into the well known waterfall model in 1970. More recently, the iterative development,
the spiral, and the transform models have been formulated in response to problems in applying the wa-
terfall model to some types of software applications. Richardson and Wong (1987) have identified three
important aspects of adaptation of the traditional life cycles to the development of KBSs as changes and
improvements to requirements documents, addition of an iterative prototyping loop, and inclusion of the
user in the development process.

In the following paragraphs, four life cycle models for conventional software are defined with com-
ments from the literature on the applicability of each as a life cycle model for advanced automation soft-
ware.

B.2.1 Waterfall Model

The waterfall model is a refinement of the stage-wise model by incorporating successive feedback loops
between stages (phases) and confining iterations as much as possible to neighboring steps, to minimize
the much more expensive long-range feedback loops. Each phase in the life cycle ends with a verifica-
tion or validation activity in order to minimize the number of undetected errors. Figure B-1 illustrates
the eight steps in the waterfall model. Each phase in the life cycle feeds back information to earlier
phases, for refinement of documentation or to provide for regressive iteration. The specific activity at
each stage takes place and is completed for the entire system before progression to the next stage.

The waterfall model has become the basis for most software acquisition standards today. This model is
a linear progression of phases that are expected to yield correct results because it is based on complete
and rigid documents (system specification, software requirements specification, top-level design docu-
ment, detailed design document) that serve as a basis for verification and validation. The waterfall
model is primarily a document-driven approach with documents as completion criteria for early require-
ments and design phases (Boehm, 1988).

Because a formal and complete specification of the problem is a necessary prerequisite of the waterfall
life cycle, standard software engineering methodologies based on rigorous requirements definition have
seldom been applied to the development of KBSs. The specifications for a KBS are rarely complete.
The exception to this generalization is the case where most of the knowledge is acquired from docu-
mented sources.

One example where traditional methodologies were successfully adapted and applied is the KBS devel-

oped by Bochsler and Goodwin (1986 a) to demonstrate automated rendezvous and proximity operations
onboard a space vehicle during flight. This was possible because documented knowledge sources were
readily available. Applicable documentation from the existing Orbital Operations Simulator was utilized
for an initial rapid prototype. For Space Station Freedom as the rendezvous target, the rule base was
derived from proposed guidelines for Space Station Freedom's command and control zone operations.
For a hypothetical orbital maneuvering vehicle as the rendezvous target, the rendezvous profile from the
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ShuttleProgramwasadaptedto thehypotheticalvehicle.DocumentedShuttleflight rulesandother
relevantdocumentsthatwereidentifiedduringmeetingswiththedomainexperts(thetrajectorymission
planners)providedadditionaldocumentedknowledgesources.
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Figure B-1. The Waterfall Model of the Software Life Cycle
(Source: Boehm, 1988)

Formal guidelines and requirements were the products of the requirements phase. A traditional struc-
tured, top-down analysis and design technique was used to develop the requirements, construct the de-
sign, and support implementation. This approach was augmented by judicious prototyping. A rapid
prototype provided insight to the proposed architecture during the definition phase and enhanced com-
munication with the experts while developing detailed system designs. Limited scale prototyping of
specific troublesome problems was again used in the design phase to augment the top-down design
methodology (Bochsler and Goodwin, 1986 a and 1986b).

B.2.2. Iterative Development Model

The waterfall model, with its detailed requirements and specifications documentation, does not work
well for interactive end-user applications where user interfaces and decision-support functions are often
ill-defined. In response to the needs of this type of system, the iterative development model, also re-
ferred to as the evolutionary development model, has been formulated with improved and more frequent
communications between customer and developer (McCracken and Jackson, 1982). This model
emphasizes the use of prototyping capabilities to converge on high-leverage software product features
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essentialtotheuser's mission. Application users are given a physical representation of key system fea-
tures long in advance of final implementation. The phases of this model consist of expanding in-
crements of an operational software product with the direction of evolution being determined by oper-
ational experience and user acceptance. Boehm (1988) characterizes the iterative development model as
a code-driven approach that may lead to poorly modularized code, which is difficult to interface with
other independently evolved applications.

Some aspects of KBSs are similar to the characteristics of conventional interactive end-user applications
where user interfaces and decision-support functions are often ill-defined at the outset. Therefore, it is
not surprising that the most frequently used life cycle model for the development of KBSs has been a
variation of some sort on the iterative development model. Two variations on this iterative development

theme are presented in the following paragraphs.

The Abacus Programming Corporation has evolved a methodology based on an iterative development
life cycle for KBSs. It consists of the following four phases (Geissman and Schultz, 1988):

1 Problem Determination (analogous to the conventional requirements definition phase)

2 Initial (Rapid) Prototype (analogous to the conventional design phase)

3 Iterative Growth (analogous to the conventional coding phase)

4 Delivery System (porting to the operational delivery environment and final V&V testing in the
delivery environmen0

This example of an iterative development life cycle model for KBSs has been strengthened by Culbert et
al. (1988) with the addition of some organizational aspects to the life cycle model. They have proposed
the addition of a panel approach to provide verification and documentation at the end of each of the four
phases identified above. Regular panel review provides verification of both purpose and design of the
KBS and requirements specifications. The panel is made up of the major agents involved with a KBS:
developers, domain experts, system users, and managers with system responsibility.

Culbert et al. (1988) have further proposed that, at the end of the problem determination phase, an initial
requirement review (IRR) be held by the full panel followed by a preliminary design review (PDR) at
the end of the initial prototype phase, when the prototype is demonstrated to the panel. Architectural
issues and overall feasibility are evaluated and requirements that were generated during this phase are
documented. At the end of the iterative growth phase a formal system design review (SDR) is held with
the full panel. Requirements are consolidated into a formal System Requirements Document and a test
plan, describing how the completed KBS will be verified, is published by the panel. Problems
encountered in the testing of the delivery system are reviewed by the panel and the system may be sent
back to the iterative growth phase. After it passes testing, the KBS can be put under standard
configuration control. Maintenance can be handled in a standard manner, but extensive changes may
require further prototyping work and review by the panel.

B.2.3 Spiral Model

The spiral model is a flexible, risk-driven model. It consists of a spiral with four major steps repeated
in the same sequence in each cycle at increasing levels of elaboration, as shown in Figure B-2. The
major steps within each cycle include (1) identification of objectives, constraints, and altemative means
of implementation for this cycle of the product; (2) evaluation of alternatives with identification and
resolution of risks; (3) development and verification of next-level product; (4) planning for and
commitment to the next cycle.

96



Determine objectives,
alternatives & constraints

r Progress

through steps

Evaluate alternatives,

identify & resolve risks

Commitment
Review
Partition

Risk

Risk

,alysis

Prototype

Requirements pier mulations, models, benchmarks
life cycle plan

operation

Software
requiremen product Detailed

Development Requirements design
plan validation

Integration Design validation

and test plan and verification Integratic

Plan next

phases

Implementation

Develop & verify

next-level product

Figure B-2. Spiral Model of Software Life Cycle
(Source: Boehm, 1988)

The major difference between the waterfall model and the spiral model is that incorporated in each cycle
of the spiral model are considerations of objectives, alternatives and project risks. The risk resolutions
drive the development process. Because risk considerations can lead to the implementation of only a
subset of all the potential steps in the model, variations of the spiral model can accommodate most pre-
vious models as special cases when appropriate. For example, risk analysis of a project with low risk
in user interface and performance but with high risk in budget and schedule control would drive the spi-
ral model toward an equivalent of the waterfall model. On the other hand, risk analysis of a project with
high risk in either user interface or performance would drive the spiral toward the iterative development
model. In addition, risk-driven specifications can have varying degrees of completeness, formality, and
granularity, depending on the relative risks of doing too little or too much formal specification. Proto-
types may or may not be used; they may be used to derive requirements or to explore difficult design
decisions, and then be thrown away; or, alternatively, they may be iteratively refined into a final prod-
uct. The major benefit of the spiral model is that it is not a single rigid model applied to all software de-
velopment projects.

At the present time the spiral model is not as fully elaborated as the more established models. Its pri-
mary difficulties are that it does not yet match the world of contract software acquisition, it relies heavily
on risk-assessment expertise, and it needs further elaboration of spiral model steps to ensure that all
software development participants are operating in a consistent context (Boehm, 1988).
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Severalauthors (Stachowitz and Combs,1987; Geissman and Schultz, 1988; Culbert et al., 1988) have
recommended an iterative development life cycle similar to the spiral life cycle model for the develop-
ment of knowledge-based software. However, Boehm, (1988), the originator of the spiral life cycle
model, makes a distinction between the iterative development model and the spiral model. He charac-
terizes his spiral model as a risk-driven approach and iterative development model as a code-driven ap-
proach to the management of the development of software. The cited articles focus on the iterative
(prototyping) aspect of the development of KBSs but do not directly address the risk evaluation aspect,
the essential characteristic of the spiral model. Periodic risk analyses of KBSs and the evaluation of al-
ternatives can address the issue of replacing models of human reasoning processes (e.g., heuristic
search) with algorithms and other techniques when sufficient information has been learned about the
problem domain through the implementation and evolution of the initial system. Friel and Mayer (1985)
cite MACSYMA and R1 as examples where the initial developments were based on human reasoning,
but as developers learned more about the problem domain through the implementation and evolution of
the systems, most of the heuristic search aspects of the applications were replaced.

B.2.4 Transform Model

Applications developed with the waterfall model can become increasingly hard to modify when code is
repeatedly enhanced (i.e., updated) and optimized for performance. It is also difficult to verify that the
source code matches the requirements description and the behavioral specification of the waterfall
model. The transform model, also referred to as the operational model, responds to these problems with
an automation-based, specification-driven model as shown in Figure B-3. From the earliest stages of
the life cycle the product is an executable abstraction of how the software is supposed to work.
Modifications are made to the specifications, bypassing direct modification of code that has become
poorly structured through repeated updates (Balzer et al., 1983). It also bypasses the intermediate
design, code, and test activities. Where a compiler exists to move the specifications this close to the
code, much of the work of verification becomes a one-time effort of insuring the quality of the compiler.
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Requirements
Analysis Formal ._Specification

Validation _
Maintenance

Decisions

Rational

Mechanical
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Formal

_ DevelopmentConcrete

Soj_rce

Program

Tuning

Figure B-3. Transform Life Cycle Model
(Source: Balzeret el., 1983)

This model is limited in applicability because of its requirement for a software capability to automatically
convert a formal specification of a software product into a program satisfying the specification (Boehm,
1988). Currently the transform model supports spreadsheets and fourth generation language ap-
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plications.However,researchsystemsthatareexploringtheapplicationof AI techniquesto the
knowledge-intensiveactivitiesto automatemajorportionsof atransformationalimplementationmay
changethefutureof softwareengineering.At thepresenttime,IBM'sCASE/MVSprojectisapplying
thislife cyclemodeltooperatingsystemdevelopment.Thelong-termgoalisto implementafull-scale
KBS,andsignificantlyautomatetheprocessof producingtestedMVS/XAproductcodeasaresult
(Symonds,1988).

Applyingthetransformmodeltothedevelopmentof advanced automated software is still in the research
stage. For example, Neches et al. (1985) have proposed an approach to the development of KBSs,
called Explainable Expert Systems (EES), which provides an extended explanation capability and an
automatic program writer to derive code from more abstract specifications thereby simplifying the
maintenance process. The system developers provide a knowledge base containing descriptive
knowledge of how the domain works, and abstract problem-solving methods that apply to classes of
problems.
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APPENDIX C

KEY CONTACTS

This section contains the names and contact information for persons that were interviewed during this
study. Time and other constraints did not allow us to interview personnel from every facility discussed
in this paper, information on other facilities was obtained from existing documentation and discussions
with MITRE personnel familiar with the facilities.

Funding Organization

Strategic Plans and Programs, Code ST
Office of Space Station
600 Independence Ave., S.W.
Washington, D.C. 20546

Gregory E. Swietek
Manager, Advanced Automation and Robotics
(202) 453-2869
NASAMail: GESwietek

Managing Organization

Intelligent Systems Branch
Engineering Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Kathleen J. Healey
Chief, Intelligent Systems Branch
Mail Stop: EF5
(713) 483-4776
NASAMail: KHealey/JSC/NASA

Kenneth. R. Crouse

Mail Stop: EF5
(713) 483-2040
NASAMail: KCrouse/JSC/NASA

autho_

The MITRE Corporation
1120 NASA Road 1 Suite 600
Houston, TX 77058
(713) 333-5020

Steven E. Bayer
NASAMail: SBayer/JSC/NASA

Richard A. Harris
Lois W. Morgan
James F. Spitzer

JSC Data Management System Test Bed

Avionics System Division
Engineering Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Michael M. Thomas
Mail Stop: EH431
(713) 483-8368
NASAMail: MMThomas/JSC/NASA

IBM Data Management System Test Bed

International Business Machines Corporation
3700 Bay Area Blvd.
Houston, TX 77058

Robert Hasbrouk
(713) 282-7801

$$C Operations Management System Node

Engineering Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Max D. Holley
Space Station Engineering Office
Co-Chair OMS Integration Working Group
Special Assistant to Director, Engineering
Mail Stop: EZ
(713) 483-0404
NASAMail: MaxHoUey/JSC/NASA

Allen E. Brandli
Avionics Systems Division
Co-Chair OMS Integration Working Group
Mail Stop: EH3
(713) 483-8238
NASAMail: ABrandli/JSC/NASA
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JSC Thermal Test Bed

Crew and Thermal Systems Division
Engineering Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Jeffrey S. Dominick
Mail Stop: EC2
(483) 525-9132
NASAMaiI: JDominick/JSC/NASA

ARC Thermal Test Bed/OAST TEXSYS

Systems Autonomy Demonstration Office
Ames Research Center
Moffett Field, CA 94035

Brian J. Glass

Mail Stop: 244-18
(415) 694-6525
e-mail: glass@pluto.arc.nasa.gov

LeRC Automated Electrical Power System Test

Space Station Electrical Systems Division
Space Station Systems
Lewis Research Center

21000 Brookpark Road
Cleveland, OH 44135

Jim Dolce
(216) 433-8052
NASAMail: JDolce/LERC/NASA

LeRC/OAST PMACS

Aerospace Technology Division
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

Edward Petrik
(216) 433-6754
NASAMaiI: EPetrik/LERC/NASA

MSFC Power Managemen[ _jad Distribution
System Test Bed

Electrical Division
Electrical Power Branch
George C. Marshall Space Flight Center
Alabama 35812

Bryan Walls
MailStop EB 12
(205) 544-3311
NASAMail: BWalB/MSFC/NASA
e-mail: waUs%ssl.span@ fedex.msfc.nasa.gov

JSC Genetic Electrical PQwer Distribution and
Control Test Bed

Avionic Systems Division
Engineering Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Roberto M. Egusquiza
Mail Stop: EH3
(713) 483-8284
NASAMail: REgusquiza/JSC/NASA

ARC Advanced Architecture Test Bed

Information Systems Division
Ames Research Center
Moffet Field, CA 94035

Henry J. Lum
Chief, Information Systems Division
(415) 694-6544
NASAMaiI: HLum/ARC.R/ARC/NASA

Terry L. Grant
(415) 694-6526
NASAMail: TGrant/ARC.R/ARC/NAS A

INCO Expert System Project

Systems Division
Mission Operations Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

John F. Muratore
Mail Stop: DF24
(713) 483-0796
NASAMail: JMuratore/JSC/NASA

Tr'dnsition Flight Control Room

David Barker

Mail Stop: JSC FACC/B2B
(713) 335-6530
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Space Station Program Offic_

Del W. Weathers
(703) 487-7248
NASAMail: DWeathersP3SE/SS/SSPO/NASA

Multi-System Integration Facility

Space Craft Software Division
Mission Support Directorate
Lyndon B. Johnson Space Center
Houston, TX 77058

Janet W. Bell
Mail Stop: FR431
(713) 483-5295
NASAMail: JBell/JSC/NASA
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GLOSSARY

A&R
ADC
ADI
ADS
ADS
AGE
AI
AIESTWG
AMPSLAB
APAE
APEX
ARC
ARCHANGEL

ART
AT
ATAC
ATCS

BIU

C&T
CCZ
CLOS
CMS
CMZG
COTS
CRT
CY

_C
DA_
DADS

D_
DMA
DMS
DPNS

ECLSS
EES
EPS
ESTEC
ETC
EVA

FDDI
FDF
FDIR
FEU

Automation and Robotics

Analog-to-Digital Card
Applied Dynamics Intemational
Ancillary Data Services
Automated Document System
Aerospace Ground Equipment
Artificial Intelligence
Artificial Intelligence, Expert Systems, and Technology Group
Autonomously Managed Power Systems Laboratory
Attached Payload Accommodations Equipment
Automated Power Expert
Ames Research Center
Autonomous Real-time Control of Hierarchical Agents and Networks at
the Global Executive Level
Automated Reasoning Tool
Advanced Technology
Advanced Technology Advisory Committee
Active Thermal Control System

Bus Interface Units

Communications and Tracking
Command and Control Zone

Common Lisp Object System
Control and Monitoring Subsystem
Control Movement Gym
Commercial off-the-shelf

Cathode Ray Tube
Calendar Year

Displays and Control
Data Acquisition and Control System
Data Acquisition and Distribution Services
Direct Current

Digital Equipment Corporation
Direct Memory Access
Data Management System
Distributed Processing Network Simulator

Environmental Control and Life Support System
Explainable Expert Systems
Electrical Power System
European Space Technology Center
End-to-End Test Capability
Extra-Vehicular Activity

Fiber Distributed Data Interface
Flight Data File
Fault Detection Isolation and Recovery
Functional Equivalent Unit
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FLIPS
FRAMES
FTS
FY

Gbyte
GEPDC
GFLOPS
GN&C
GPS
GSFC

HAE
HCI
HIP
HITEX
HW

IBM
IESP
IMU
IIM
INCO
1,40
IOC
IRR
ISA
ISB
1T&V
IV&V

JSC

KBS
KEE
kHz
KVA
kW

LAN
LANES
LeRC
LES
LLP
LMSC
LPI.aVIS

Mbps
Mbyte
MBS
MBSA
MCC
MCCU

Fuzzy Logical Inferences Per Second
Fault Recovery and Management Expert System
File Transfer Services
Fiscal Year

Gigabyte
Generic Electric Power Distribution and Control
Billions of Floating Point Operations per Second
Guidance, Navigation, and Control
Global Positioning System
Goddard Space Flight Center

HCI Ada Executive
Human Computer Interface
Human Interface to Power
Human Interface to TEXSYS
Hardware

International Business Machines

INCO Expert System Project
Inertial Mass Unit

Integrated Inference Machines
Integrated Communications Officer
Input/Output
Initial Operations Capability
Initial Requirement Review
Integrated Status Assessment
Intelligent Systems Branch
Independent Test & Verification
Independent validation and verification

Johnson Space Center

Knowledge-Based System
Knowledge Engineering Environment
Kilohertz
Kilovolts Alternating Current
Kilowatt

Local Area Network
Local Area Network Extensible Simulator
Lewis Research Center
Loads Enable Scheduler
Lowest Level Processors
Lockheed Missiles and Science Corporation
Loads Priority List Management System

Megabits per second
Megabyte
Megabyte per second
Main Bus Switching Assembly
Mission Control Center
MCC Upgrade
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/vlEIVl
MFLOPS
MID
MIL
MIPS
MIS
MOD
MPAC
MPAD
MSID
MSC
MSD
MSFC
MSIF
MTK

NASA
NIE
NIU
NOS
NOSLIB
NSE
NSTS

OASIS
OAST
OBCO
OMA
OMGA
OMS
OMV
ORU
OSI
OSS

PC
PDCU
PDR
PDRD
PI
PLS
PMACS
PMAD
PMC
PPD
PSAD
PSCN
VIAl)
PTCS

RAD
RCS
REX

Multiplexer-Demultiplexer
Millions of Floating Point Operations per Second
Multipurpose Interface Device
Military
Millions of Instructions per second
Management Information Systems
Mission Operations Directorate
Multi-Purpose Applications Console
Mission Planning and Analysis Division
Measurament Simulation Identification

Mobile Servicing Center
Mission Support Directorate
Marshall Space Flight Center
Multi-System Integration Facility
Model Tool Kit

National Aeronautics and Space Administration
Network Interface Element
Network Interface Units
Network Operating System
Network Operating System Library
Network Service Element
National Space Transportation System

Operations and Science Instrument Support
Office of Aeronautics and Space Technology
On Board Check Out
Operations Management Application
Operations Management Ground Application
Operations Management System
Orbital Maneuvering Vehicle
Orbital Replaceable Unit
Open Systems Interconnect
Office of Space Station

Personal Computer
Power Distribution Control Unit
Preliminary Design Review
Program Definition and Requirements Document
Procedures Interpreter
Payload Simulator
Power Management and Control System
Power Management and Distribution
Power Management Controller
Projection Plotting Display
Power System Autonomy Demonstration
Program Support Communications Network
Power-Thermal Autonomy Demonstration
Passive Thermal Control System

Read Only Memory
Reaction Control System
Rendezvous Expert System
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RF

SADP
SATP
SDD
SDI
SDP
SDP
SDR
SFDF
SIB
SIF
SPF
SRD
SSCC
SSE
SSEDF
SSFP
SSFPO
SSIS
SSM
SSFPE
SSTF
SUT
SVMS

TAVERNS
TCAS
TCP/IP
TCS
TDAS
TDRSS
TEXSYS
TFCR
TI

UIL
UIMS
UUT

V&V
VAC
VAD
VDB
VHSIC

W_c.X
WP

WS
XTK

Radio Frequency

Systems Autonomy Demonstration Project
Systems Autonomy Technology Program
Systems Development Division
Strategic Defense Initiative
Standard Data Processor
Standard Data Processors
System Design Review
Station Flight Data File
Simulation Interface Buffer
System Integration Facility
Software Production Facilities
System Requirements Documentation
Space Station Control Center
Software Support Environment
Software Support Environment Development Facility
Space Station Freedom Program
Space Station Freedom Program Office
Space Station Information System
Space Station Module
Space Station Freedom Program Elements
Space Station Training Facility
System Under Test
Spaceborne VHSIC Multiprocessor System

Test And VErification of Remote Networked Systems
Test Control and Simulation Environment
Transmission Control Protoeol/Internet Protocol
Thermal Control System
TEXSYS Data Acquisition System
Tracking and Data Relay Satellite System
Thermal Expert System
Transition Flight Control Room
Texas Instruments

User Interface Language
User Interface Management System
Under Test

Verification and Validation
Volts Alternating Current
Volts Direct Current
Verification Data Base
Very High Speed Integrated Circuit

Windowing Executive
Work Package
Workstation Prototype Lab
Work Station
Executive Tool Kit
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